皇朝经世文统编 - 卷九十六 格物部二 算学

作者: 邵之棠108,482】字 目 录

一燕相并即为五雀六燕所以可将十六两分为两个八两一为一雀五燕之重一为四雀一燕之重则可改其题之说法云一雀五燕共重八两四雀一燕亦共重八两问雀燕一枚各重几何

凡看数题而觉此题与彼题相似者必将其两题看至极其透彻究竟其中或有略异之处否题有面目虽异而算法则同者亦有面目相似而算法不同者

假如有两题其一云原有钱一千文已用去四百文今剩钱若干其二云原有钱一千文今剩去四百文已用去若干

 则此两题之说法虽异而算法则同因用去之钱与今剩之数于原有之中减了今剩即是用去之数也

假如九章之题云今有兔先走一百步犬追之二百五十步不及三十步而止问犬不止复行几何步及之

又如代数术中之题云有野兔为猎犬所追兔在犬前五十步犬每行三步兔能行四步而兔之三步等于犬之两步问犬追若干步可得兔 观此知中西皆有犬追兔之题其说法及算法略有不同而所求之数则俱为犬之步数也其第一题不及三十步而止之句其三十是兔之步数若认作犬之步数则误矣

算学之题大抵有比例者居多惟其相比之理每暗藏于所言各事之事其相比之数又颠倒错乱和较杂糅于各数之内观者最易为其混淆

即以四率比例之题而论其一率二率三率有顺列于各句之内者亦有不依次序者试列六题如左

其一题云原有钱二十千文买得米十石今有钱五十千文问可买若干石

其二题云先将米十石售得钱二十千文今又欲得钱五十千文问须售去米若干石

其三题云今有钱五十千文欲以买米先用钱二十千文买得米十石问其钱可共买米若干石

其四题云今有钱五十千文欲以买米已知每米十石其价为二十千文问可买米若干石

其五题云甲有钱二十千文乙有钱五十千文均欲买米甲将其钱买得米十石问乙钱可买米若干石

其六题云甲有米十石乙有钱五十千文甲以其米售得钱二十千文问乙钱可买米若干石

 则以上六题其比例之率均为二十与十之比若五十与二十五之比

总言之算学中所有之各题其平正通达简明直捷者固多而其暗藏机械有意难人者亦复不少看题之人如听断疑狱如搜捕伏匿虽具明察之才精细之心苟非老成谙练洞悉此中故智者不能尽知其情伪也

更有一种难题其设题之时已将题中要紧之义藏匿于人所不易留心之处而将题中不应有之算理显豁呈露以使人易于误认若不迟回审顾而后下手鲜有不受其愚弄者

假如有题云今有布一匹共长二十尺每日剪取一尺用之问几日剪毕

 则骤观此题必答曰二十日殊不知其数已误矣因题之所问者是几日剪毕非问几日用毕也若问几日用毕则每日用一尺其二十之布当为二十日用毕今问几日剪毕则每日剪去一块其长一尺至第十九日已剪去十九块计共已剪去十九尺其所剩之一块适得一尺可为第二十日之用而第二十日取此一块布时不必再动剪刀则是十九日剪毕也

由此可见前题中末句之剪字乃是最力之字断乎不可轻忽者也看题之时若读至末句不能将此剪字看出而以为与几日用毕几日可毕几日而毕几日乃毕无异则安得不误算耶

其所以易误之故因题中所言之各数俱为整齐易算之数其二十尺为一尺之二十倍而一日剪一尺又明明有一比例之理置于面前则观者不及转念已不觉脱口而出曰二十日是驷不及舌矣

假如有题云今有竿高十尺有虫从平地起缘竿而行每日能上二尺而夜间必缩下一尺问此虫几日能到竿顶

 见此题而不细思其故必以为每日上二尺而下一尺则是只上一尺也一日上一尺则十日必上十尺而到竿顶矣所以必答曰十日

 殊不知行至第八日其虫之足已至九尺之处及缩下而在高第八尺处过夜至第九日穷日之力再上行二尺已到竿顶矣题所问者是能到竿顶之日其已到而再缩下则不计矣

前题所以易误之故由于始念之差但知其每日只上一尺而忘其第一日上行之数已到二尺之处若以第一日为能到二尺而每日能上一尺固是九日到顶也

大抵看题之法不过是心思细密又能习练眼光令人不能乘我之懈耳非必每题每术一一能强记之也

论驭题之法 

华蘅芳

学者既能看明题理即能用加减乘除开方等法以驭其题惟题之形状万变不穷则驭题之法亦当随机应变不能执一以论也

寻常之算学书其每题之下必有答数又必有专算此题之术或更有细草图说附焉则依其术以演其数固是易易惟每题各有一术苦于不能记忆学算之人若非胸有成竹则一掩卷即不能算矣于是有将各术分明别类编成歌诀以便于记诵者殊不知所记者乃是呆法耳题目一变即无所用之矣

既明算理之人于书中所有之各题可不必观其术曰如何自能立术以驭其题其所立之术或与本书之术合或出于本书之外而能殊途同归惟但明几何而未习天元之人其所立之术必枝枝节节而为之不能有一以贯之之理故其用心也苦而用力也劳

不论其题之如何变化而概用一法驭之者惟天元之术能之然天元仍籍几何为用故虽有天元而几何之理要不可以尽废也

算学中有数种常用之法其理皆从几何而出其法必由于学之而后能苟无其法则加减乘除开方无所施其技而天元亦不能用矣兹设数题以明其各法之用

一题 有大小两数之和及大小两数之较求其大小两数

 法以和较相加半之得大数以和较相减半之得小数

二题 有四率比例之一二三率求其第四率

 法以二三两率相乘一率除之得第四率

三题 有正方形或方形之纵横两边求其方形之面积

 法以纵横两边相乘得方形面积

四题 有句股形求其面积

 法以句与股相乘半之得句股形面积

五题 有平三角形求其面积

 法以底边与中垂线相乘半之得三角形面积

六题 有平圆之周径求其面积

 法以周径相乘四除之得平圆面积

七题 句股弦面羃相等之理

 凡句之平方与股之平方相并必等于弦之平方

八题 求正立方形及带纵立方形之体积

 法以长与相乘又以高乘之即得立方形体积

九题 求堑堵阳马臑之积

 堑堵之积居立方二分之一 阳马之积居立分三分之一 臑之积居立方六分之一

十题 求高台之积

 法以上长倍之加下长以上广乘之又倍下长加上长以下广乘之两数相并又以高乘之以六除之得其台积

以上十题仅择算书中最要者略举数端耳读者触类旁通可也

论学算之法 

华蘅芳

算学中门径甚多歧途百出非备尝此中之艰苦者不能洞悉其曲折所以学算亦不可无法也

学算之人其志向各有不同故其所学之事遂亦从此分焉综而计之大约可分为两类一为阐明数理以成著作一为推演各数施之实用

算学中可施之实用者皆无难为之事如推田亩之积步仓之积斛商功之积尺测量高深广远推步日月五星皆已有成法在前依其法而演之祗须知加减乘除及比例之法已绰乎有余其须用开方者固不多见也

即进而论造表之法如八线与弧背互相求真数与对数互相求或从纵横两线求各曲线之长及其所函之面积皮积体积若既有其本题之级数式依其式而演之亦不过用加减乘除开方而已并无难为之事也

所以学算者之志向若只求见用于当世为衣食名利之计则祗须熟习整数分数小数之三种加减乘除开方再从各书中摘录测量推步各种成法藏之箧中便已无所不能算矣天元代数之术皆可不必究心也

若非急于求用而务欲阐明数理则其所学之事非株守成法者所可比因数学中深奥之理无穷则其明理之法亦非一端所能尽故必兼综各法乃于理无障之处也

一切算法皆从条之理而生故算学中浅近之理皆可以几何之法明之惟笃信几何之人每自恃其点线面体之学而不信天元且不肯再习天元此乃为几何所囿而不得自脱者也

用几何之法以明算理每题必作一图每图必系以说有图无说有说无图皆不足以发明题义然至立方以上其条之理已不能绘图则几何之术穷矣天元之术不必处处言条而一切条之理无不包括于其中此益古演之所由名也至如积相消而条之理终不肯紊乱所以无论若干乘方亦无论如何带纵不必分别其形象而概以一例推之

惟演元之书其所设之各题大抵务为深奥而不适于用习天元者不能不习其题则从此又生魔障矣此非为天元所误乃为天元书中之题所误也

即如句股弦可以彼此相求又能以和较之互相求又能以和较之和较互相求亦可谓极其变化之妙矣犹不肯已则以同式之各句股又成和较而一一识别其彼此相关之理标名立目条分缕析以解之创之者自诩神奇传之者共推绝学师以此授其弟官以此课其士萃古今能算之才使之困顿老死于句股之中而不自知悔悟者李栾城之力也

几何之学从条以明题理故条明而题理亦明天元之学从题理以明条故题理明而条亦明惟几何之条必藉夫图天元之条则无藉乎图也所以天元所明之理能比几何更深

然天元但能将未知之数明其条而其已知之数则浑和于太极之中不能一望而知其条如何惟代数之术则无论已知之数未知之数其条之理莫不一二分明故代数所明之理又能广于天元

学者既明代数之术则于数理之奥赜者固无不能明矣然犹有言之或甚繁求之或甚难而不得简易之法以赅之者何哉因代数但能推一切常数而不能推其变数也惟微分积分之术则能推一切变数故有微分积分之术而代数之用愈广矣

或有问者曰如子之说天元胜于几何代数胜于天元微分积分又胜于代数则学者何不径习微积而必从几何元代以及微积耶

答之曰不习几何则于如积之理不能尽明故不可径习天元不习天元则于正负开方之理不能尽明虽从代数得其相等之式亦不易求其同数微分积分其算式仍籍代数为用不习代数乌能径习微积所以几何元代微积其学必循序而及不可躐等而进也

或又问曰微积之必由代数而出固无疑矣若谓习代数者必先知天元习天元者必先明几何此乃欺人之论也夫天元中法也几何代数皆西法也中西各创其法曾未彼此相谋则创天元者固不知有几何也创代数者亦不知有天元也不知者尚且能创而谓反不能学者天下有是理乎

答之曰余之所谓循序而及者言如此学之则易于入耳非谓舍此即不能学也创天元者固未见几何之书而天元之理则无非几何之理也创代数者虽未见天元之书而代数之理则犹之天元之理也然则几何元代其明理之法虽异而其所明之理则同惟几何为初学所最易明故必从几何入手天元之书难于几何而易于代数以其有数可核也代数之法繁于天元而其用则广于天元故既明天元方可学代数

又有问者曰演数与明理既分为两途则演数者固不必明理矣惟不知明理者亦能演数否且不知明理者所演之数有异于不明理者所演之数否

答之曰明理之人惟不喜演数耳非不能演数也使强明理之人为演数之事其演得之数亦无异于演数者所演之数也惟专门演数之人因已演之甚熟故速而且准为明理者所不能及耳

或又问曰算法之事所用者数也明其理而不善演其数则是能说而不能行矣又曷取乎明理为哉

答之曰演数者祗能用法而明理者则能创法凡演数者所用之法皆明理者之所创也算法古疏今密古拙今巧苟非明其理而精益求精安能至此乎明理之人譬如创业演数之人譬如守成其劳逸难易有不可同日而语者明理之人非但能创前所未有之法又能以因为创而将从前已有之法改之使更便于用故有至难之法一变而为至易者亦有至繁之法一变而为至简者即如圆径求周古时用割圆之法开方数十次仅能得数位密率今用屡乘屡除可任求若干位密率而不必开方又如求八线之法古时用六宗三要二简法而不能任求某角之线今则弧背与八线能彼此相求又如真数求对数古时用中比例之法以代开数十百次之方今用级数可以任求而不必用中比例其简易不知几何倍矣

或又问曰明理始能创法是创法之人无有不明其理者也吾见近时算学之书每有但言其所立之各术而于立术之理则不赘一辞岂其理祗能自明而不能与人共明欤抑秘其立术之理而惟恐人之得明欤

答之曰子所言之书其创法之时用天元之术以演各尖堆之积枝枝节节而为之此中曲折之故祗为创法者所自明若欲与人共明其理则取径纡布算繁重演之非易言之甚难不能如微分积分之直捷简明也卷帙既多则刊校均非易事故先刊各术而其释术之书将俟续出后因已见微积之术觉己法不足以传示后世遂焚弃其稿未可知也或身遭兵燹就义成仁而遗稿飘零散失亦未可知也

或又问曰有数种算学之书其所立之术虽未尝自匿其理而观其释术之语终不能明白晓畅其故何也

答之曰立术之理若非从大公至正之轨悟入每觉可以意会而不可以言传故自明其理则易欲使他人共明其理则难其人虽有深致远之心思而笔墨所达未能

打 印】 【来源:读书之家-dushuzhijia.com】

首页上一页123 4567下一页末页共30页/60000条记录