行【江氏永曰太隂平行不及减者加十二宫减之后仿此】得引数【江氏永曰太隂距月孛度】用直角三角形以本轮半径之半为对直角之边【江氏永曰均轮半径二十九万居本轮半径之半故本轮内减去均轮半径其余为本轮半径之半】以引数为一角求得对角之边【江氏永曰半径千万为一率引数正为二率对直角之边为三率求得四率为对角之边 引数过象限以后用二率之法详日躔求实行条】三因之【江氏永曰本轮半径之半二十九万合本轮均轮半径八十七万是三其二十九万也故小边无论大小皆三因之三之一为对角之边三之二即均轮上倍引数度之通均轮右旋必倍引数其理与太阳同此边所抵即次轮最近防所在】又求得对余角之边【江氏永曰半径千万为一率引数余为二率对直角之边为三率求得四率为对余角之边用二率之法同上】与半径相加减【引数九宫至二宫相加三宫至八宫相减 江氏永曰初】
【宫起最髙故与太阳加减异】复用直角三角形以三因数为小边加减半径数为大边【直角在两边之中】求得对小边之角为初均数【江氏永曰大边为一率小边为二率本天半径为三率求得四率为正切以正切线检表得均角度言初均者对后二三均也】并求得对直角之边为次轮最近防距地心线【为求次均数之用 江氏永曰本天半径为一率初均数度之正割线为二率大边为三率求得四率为次轮最近防距地心线次轮与均轮相切最近防谓最近于均轮心】置用时太隂平行以初均数加减之【引数初宫至五宫为减六宫后为加】为初实行【江氏永曰初实行者次轮最近防所到之度惟定朔定望此防即为次均轮之心月在次均轮之底与距地心线正相值即以初实行为月实行非定朔定望更有二三均加减】
求白道实行 置初实行减本日太阳实行得次引【即月距日度 江氏永曰太阳实行求日躔时所得必用实行乃得实距后五星同】用三角形【江氏永曰斜三角也】以次轮最近防距地心线为一边【江氏永曰此线为初实行之界线】倍次引之通【千万为一率次引之正为二率次轮半径为三率求得四率倍之即通 江氏永曰月距日一度次轮上左旋二度故用倍次引之通通者正之倍也】为一边【江氏永曰此边所指即次均轮心所到】以初均数与引数减半周之度【引数不及半周则与半周相减如过半周则减去半周 江氏永曰引数减半周之度即均轮心距最卑之度】相加【江氏永曰初均数有加有减此与引数减半周之度恒相加何也凡次轮最近防距地心线惟初宫六宫之初度无初均数者其线正有初均数则线必斜其斜线之数即初均之数试置最近防于次均轮心借次均轮上作度初均为加者度在轮之左半斜线穿心至近顶分轮为两其左半必一百八十度也而讣度必从轮之正顶始正顶在斜线之右则当加此数矣初均为减者度在轮之右半斜线穿心至近顶亦分轮之右半为一百八十度而正顶在斜线之左则亦当加此数矣故无论初均为加为减恒用加】又以次引距象限度【次引不及象限则与象限相减如过象限及过三象限则减去象限及三象限用其余如过二象限则减去二象限余数仍与象限相减 江氏永曰次轮上为倍离度次引一象限倍之则半周次引距象限度犹之倍次引距半周度也次引二象限则次轮一周矣故过二象限与不过象限同过三象限与过一象限同】加减之【初均数减者次引过象限或过三象限则相加不过象限或过二象限则相减初均加者反是江氏永曰初均数与引数减半周之度相加即次引倍度之角故次引适足一象限者无加减其有距象限】
【度如初均减者次引未及象限则相减已过象限则相加初均加者次引未及象限则相加已过象限则相减所作角左右低昻之势异也假如初均数与引数减半周之度相加为一百五十度是初均数减则与象限相减为六十度自六十度顺数至一百五十度皆相减过此则相加又如初均数加引数减半周之度为三十度亦是初均数减则与象限相减为六十度次引六十度距象限三十度相减无余过此仍与三十度相减满象限而后相加又如初均数加引数减半周之度为二百一十度减去半周余三十度是初均数加则与象限相加为一百二十度自一百二十度逆数至三十度皆相加过此则相减又如初均数加引数减半周之度为三百三十度减去半周余一百五十度亦是初均数加加一象限为二百四十度自二百四十度逆数至一百五十度皆相加其间次引六十度距象限三十度相加适足半周过此仍相加加一象限而后相减】为所夹之角【若相加过半周则与全周相减其余则为所夹之角若相加适足半周或相减无余则无二均数若次引为初度或一百八十度亦无二均数 江氏永曰所夹之角外角也相加过半周与全周相减减其余为所夹之角亦外角也以外角减半周即本角将用半外角切线求二均故即以外角为所夹之角次轮之角在轮周借次均轮可显角度 相加适足半周或相减无余者与次轮最近防距地心线正相值故无二均次引为初度与一百八十度者定朔定望也与距线合为一故亦无二均朔望距线穿月体无二均则无三均非朔望而线相值者不穿月体虽无二均仍有三均】求得对通之角为二均数【如无初均数者以次轮心距地心线为一边次轮半径为一边次行倍度为所夹之角 江氏永曰二均数者次均轮心所到也当用切线分外角法求之距地心线与倍次引之通相并为一率相减之余为二率半外角切线为三率求得四率为半较角切线以半较角减半外角其余为对通之角 无初均者初宫与六宫之初度也次轮心距地心线以相减得之本轮半径内减去均轮次轮两半径五十万七千余七万三千初宫初度与半径相减为九百九十二万七千次引倍度为所夹之角亦外角也求二均亦仿前法边总与边较若半外角切线与半较角切线以半较角减半外角得对次轮半径之角】随定其加减号【以初均数与均轮心距最卑之度相加为加减泛限适足九十度则二均加减与初均同如泛限不及九十度则与九十度相减余数倍之为加减限初均减者以次引倍度初均加者以次引倍度减全周之余数皆与限相较并以大于限度则二均之加减与初均同小于限度者反是 江氏永曰泛限适足九十度者本轮三宫九宫之初也此际次轮皆出距地心线之外三宫初均减而次轮又在其右则同为减九宫初均加而次轮又在其左则同为加其他上下诸宫距地心线皆有割入次轮之度至初宫六宫之初度割次轮各半而止皆以此线所割之度为限其度皆与九十度减余之倍数也二均与限相较而大者在距线之外故与初均之加减同相较而小者入距线之内故减变为加加变为减】并求得对角之边为次均轮心距地心线【江氏永曰二均角之正为一率次引倍度之通为二率夹角之正为三率求得四率为次均轮心距地心线】又以此线及次引用三角法求得三均数【次均轮心距地心线为一边次均轮半径为一边次引倍度倍为所夹之角求得对次均轮半径之角为三均数 江氏永曰三均数月体所值也次均轮度亦左旋与次引倍度相应其度从轮下起所夹之角为本角过半周者与全周相减用其余为所夹之角亦本角也本角减半周为外角亦用切线分外角法求之边总与边较若半外角切线与半较角切线以半较角减半外角其余为所求之三均角】随定其加减号【次引倍度不及半周为加过半周为减 江氏永曰不及半周者月在轮左故加过半周者月在轮右故减】乃以二均数与三均数相加减为二三均数【两均数同号则相加异号则相减 江氏永曰月离二三均加减表即此数】以加减初实行【二均三均同为加号者仍为加同为减号者仍为减如一为加号一为减号者加数大则加减数大则减】为白道实行
求黄道实行 用弧三角法【江氏永曰斜弧三角也】求得黄白大距及交均【以黄白大距中数为一边黄白大距半较为一边次引倍度为所夹之角求得对边为黄白大距并求得对半较之角为交均 江氏永曰朔望黄白大距小两黄白大距大其较一十九分折其中数五度八分半较则九分半也欲求毎度之黄白大距有两边夹一角求对角之边正法须用两次乗除防法以加减代一次乗除其法两边相加为总弧相减为较弧以两弧余相减折半为初数视所夹角不过象限者用正矢过一象限者用大矢过二象限与过一象限同过三象限与不过象限同以其矢与初数相乗半径为法除之得对弧较弧两矢之较以矢较加入较弧矢得对弧矢以矢减半径为余以余减八线表得所求黄白大距前有两边又求得一边因以求对半较之角是三边求角也亦仿前法而倒用四率以黄白大距中数为一边求得黄白大距为一边两边相较为总弧相减为较弧各以余相减折半为初数以半较对弧与较弧两矢之较与半径相乘初数为法除之得所求角之矢得矢即得余因以得对半较之角其谓之交均何也两交亦有加减均度也黄白大距中数一边为纬半交一边为经两交防皆在经圈惟朔望两二边相合无交均角则两交防如其平行之度过此即有次引倍度角亦必有交均角而交防渐离其平行之处矣次引倍度满象限即半较亦成正线与白道经圈平行而均度最大得一度四十六分此一度四十六分即半较九分半所成盖半较在五度有竒之处则小在九十度处则大故也】以交均加减正交平行【次引倍度不及半周为减过半周为加 江氏永曰交行左旋减者更进而前加者则却而后也】得正交实行【江氏永曰交行常为前却之行惟朔望两平行即实行】又加减六宫为中交实行【江氏永曰正交移则对宫者亦移】置白道实行减正交实行得距交实行【江氏永曰白道实行不及减者加十一宫减之距交只论正交后以距交查切线或距正交或距中交】以本天半径为一率黄白大距之余为二率距交实行之正切为三率求得四率为黄道之正切【江氏永曰此正弧三角两角与一边求对余角之边也黄白大距为黄白交角距交实行为白道一边又黄白距纬从黄极出线截白道交黄道其交必成正角又为一角今求对余角之黄道同升度法以两角之正余比两边之正切亦即句股形大与大句若小与小句也后凡求黄赤五星本道求黄皆仿此 本天半径为一率即正角之正也后凡正弧三角用半径者仿此】检八线表得度分与距交实行相减余为升度差以加减白道实行【距交实行不过象限或过二象限为减过象限或过三象限为加 江氏永曰此与前求用时条黄赤升度时差二分后加二至后减同理距交不过象限或过二象限犹之二分后也过象限或过三象限犹之二至后也时与度相反故彼为加者此为减彼为减者此为加】为黄道实行【江氏永曰月不行黄道然求宿度求合朔望求交宫皆论黄道度故必先求黄道实行】
求黄道纬度 以本天半径为一率黄白大距之正为二率距交实行之正为三率求得四率为距纬之正检八线表得黄道纬度【距交实行初宫至五宫为黄道北六宫至十一宫为黄道南 江氏永曰距交实行之正谓黄道距交度凡正弧三角四率俱用正者正角有所对之角而所求之边又有所对之角也】
求宿度 依日躔求宿度法【江氏永曰各宿毎年加五十一秒】求得本年黄道宿钤以黄道实行月孛正行及正交中交实行各度分视其足减宿钤内某宿则减之余为各种宿度求合朔望 太隂实行【江氏永曰谓黄道实行】与太阳实行同宫同度为合朔限距三宫为上限距六宫为望限距九宫为下限皆以太隂未及限度为本日已过限度为次日求时之法以太阳本日实行与次日实行相减又以太隂本日实行与次日实行相减两减余数相较为一率【江氏永曰两减余数相较是交限日太隂距太阳之实行也以一日实行为法比出距限余分应得若干时刻】日法为二率本日太阳实行加限度【上加三宫望加六宫下加九宫】减本日太隂实行余为三率【江氏永曰求合朔即于本日太阳实行内减太隂实行余为三率 一率三率皆以度化分分下有秒约三为五六为十后求交宫时刻仿此】求得四率为距子正之分数如法收之得合朔望时刻求交宫时刻 以太隂本日实行与次日实行相减【未过宫为本日已过宫为次日】余为一率日法为二率太隂本日实行【不用宫】与三十度相减余为三率求得四率为距子正之分数如法收之得交宫时刻
求正升斜升横升 合朔日太隂实行自子宫十五度至酉宫十五度为正升【江氏永曰春分前后一宫半也】自酉宫十五度至未宫初度为斜升【江氏永曰夏至前一宫半也】自未宫初度至寅宫十五度为横升【江氏永曰夏至后五宫半也】自寅宫十五度至子宫十五度为斜升【江氏永曰冬至前半宫后一宫半也】
求太隂出入时刻 以本日太阳黄道经度求其赤道度【以本天半径为一率黄赤大距之余为二率本日太阳距春秋分黄道经度之正切为三率求得四率为赤道经度之正切 江氏永曰时刻宗赤道故必先求太阳赤道度其求法与白道求黄道同理】又用弧三角法【江氏永曰斜弧三角也】以太隂距黄道为一边
【打 印】 【来源:读书之家-dushuzhijia.com】