并之界角大一倍矣而丙丁小圜之庚癸丁丁癸辛两心角并之亦必比庚丙丁丁丙辛所并之两界角大一倍夫两圜之两界角度既等而两圜之所并之心角度又等则两界角相对之戊乙己庚丁辛两弧叚之分数亦必相等界角所对之弧分既等则心角所对之弧分亦必相等心角所对之弧分即为甲丙二界角相对之壬癸二心角之度也
第八
凡大小同式多边形分为众三角形其相当三角形之式俱相同也如甲乙丙丁戊己庚辛壬癸两同式五边形自大形甲角至丙丁二角自小形己角至辛壬二角各作二线则大形分为甲乙丙甲丙丁甲丁戊三三角形小形分为己庚辛己辛壬己壬癸三三角形而甲乙丙之形与相当己庚辛之形同式甲丙丁之形与相当己辛壬之形同式甲丁戊之形与相当己壬癸之形同式因其所分各三角形俱为同式故相当各角度必等相当各角度既等则其相当各界之比例亦必俱同自五边形所分之各三角形之相当界互相为比之比例既同则五边形之相当各界互相为比之比例亦必同相当各界之比例相同则两形之式相同可知矣
第九
凡大小同式多边形互相为比同于各形相当界所作方形之互相为比而比之各面相当界互相为比之比例为连比例隔一位相加之比例也如甲乙丙丁戊己庚辛壬癸两同式五边形于大形之丙丁界小形之辛壬界各作子丙丑辛大小两方形其大小五边形互相为比必同于所作子丙丑辛大小二方形之互相为比大小五边形既同于大小两方形之互相为比则比之丙丁辛壬相当二界互相为比之比例为连比例隔一位相加之比例矣若将甲乙丙丁戊己庚辛壬癸两形分为众三角形则相当各三角形之式必同相当各三角形之式既同则相当各三角形互相为比即同于在三角形各相当界所作方形之互相为比而各三角形面积之互相为比较之各相当界互相为比之比例亦为连比例隔一位相加之比例夫所分众三角形互相为比既同于所作方形之互相为比则众三角形所合甲乙丙丁戊己庚辛壬癸之大小五边形互相为比亦必同于丙丁辛壬相当界所作子丙丑辛大小两方形之互相为比而比之丙丁辛壬相当界互相为比之比例为连比例隔一位相加之比例可知矣
第十
凡大小同式直界形互相为比同于在所比各形内外所有同式形之各相当界所作正方形之互相为比也如甲乙丙丁戊己庚辛壬癸子丑大小两直界形于此二形内所函之甲丙丁己庚壬癸丑二同式四边形之甲丙庚壬相当二界作寅丙卯壬正方形则两直界形互相为比即同于两正方形之互相为比也若将甲乙丙丁戊己庚辛壬癸子丑两六边形俱分为三角形则其相当各三角形之式俱相同而相当各三角形互相为比必同于甲丙庚壬相当二界所作寅丙卯壬正方形之互相为比矣此所分三角形之比例既同于所作正方形之比例则大小两形内各三角形之甲丙庚壬界又为两四边形之共界而甲乙丙丁戊己庚辛壬癸子丑两同式形互相为比亦必同于其所函之甲丙丁己庚壬癸丑两四边形之甲丙庚壬两相当界所作寅丙卯壬两正方形之互相为比可知矣
第十一
凡大小同式曲界形互相为比同于在所比各形内外所有同式形之各相当界所作正方形之互相为比也如甲乙丙丁戊己庚辛壬癸子丑大小二圜此二圜之中虽各函一同式六边形各函一同式四边形又各函众同式三角形此大小二圜之积互相为比必同于在圜内所函同式形之甲丙庚壬相当二界所作寅丙卯壬正方形之互相为比也大凡众界形或函圜或函于圜其界数愈多愈与圜界相近而圜界分为千万叚即成千万直界形【见四卷第十九二十等节】则大小两圜之比例固与内函相当直界形之比例等矣夫相当直界形之比例原同于两形之相当界所作方形之比例而圜界形之比例又同于相当直界形之比例则此大小二圜互相为比之比例同于此二圜之辐线或径线所作正方形互相为比之比例可知矣第十二
凡圆面径与撱圆面【一名鸭蛋形】髙度等者其面积互相为比之比例即同于函两形各作切方形互相为比之比例而圆形面积与撱圆形面积互相为比之比例又同于圆形径与撱圆形小径互相为比之比例也如子壬寅癸之圆面子丑寅卯之撱圆面其子寅髙度俱同【圆径即撱圆大径】其面积互相为比之比例必同于圆面外所作切圆戊己庚辛正方形与撱圆面外所作切圆甲乙丙丁长方形互相为比之比例而子壬寅癸圆面与子丑寅卯撱圆面互相为比之比例又同于圆面之壬癸径与撱圆面之丑卯小径互相为比之比例也葢平行线内两面形互相为比之比例同于其底界互相为比之比例【见七卷第八节】今戊己庚辛正方形与甲乙丙丁长方形皆在戊辛己庚平行线内故戊己庚辛正方形与甲乙丙丁长方形互相为比之比例同于己庚底与乙丙底互相为比之比例而子壬寅癸圆面与子丑寅卯撱圆面亦在戊辛己庚平行线内则子壬寅癸圆面与子丑寅卯撱圆面互相为比之比例必同于戊己庚辛正方形与甲乙丙丁长方形互相为比之比例矣然戊己庚辛正方形之己庚底即圆面壬癸径度而甲乙丙丁长方形之乙丙底又即撱圆面之丑卯径度也夫平圆与撱圆之比例既同于正方形与长方形之比例而正方形与长方形之比例又同于己庚底与乙丙底之比例则圆面与撱圆面之比例同于圆面之壬癸径
与撱圆面之丑卯径之比例可知矣
防何原本九
第一
凡直角三角形自直角至相对界作一垂线则一形分为两形与原形共
【打 印】 【来源:读书之家-dushuzhijia.com】