比度几次之分也复有不知之一大数用两小数度之一小数度之而尽一小数度之而不尽【或有余或不足】即以不尽之数【或有余之数或不足之数】用两小数之较度之即得其度几次之分与大数之几何其理皆相同也
第三十一
凡数自少至多递加之而各有定率者谓之平加比例数也夫平加之数有毎次递加一者为挨次递加之数如一二三四之类是也有每次递加二者为超位平加之数如一三五七之类是也【或递加三或递加四或递加五六皆是一理】有每次増一加者为按位相加之数如一三六十之类其第二次加二第三次加三第四次加四是也有每次増二加者为按位自乘之数如一四九十六之类其第二次加三第三次加五第四次加七是也复有一种倍加者为挨次倍加之数如一二四八之类每次皆加二倍又如一三九二十七之类每次皆加三倍是也递加之数虽多按其条理求之大抵不出此数端今各列数分析于后
第三十二
凡挨次递加之数将首数与末数相加以位数乘之所得之数折半即为总数也如一二三四五六七八九之九数其毎次所加之数为一将首数一与末数九相加得十以位数九乘之得九十折半得四十五即是此九数之总数也何也夫挨次递加之数为等边三角平面形而两数相乘即成四方形今以位数九为髙末数九为底相乘所得之正方形其数八十一较之总数则多较之总数加倍之数又少此所少即一行之数爰知位数与底数相乘所得之数比总数加倍之数少一行之数矣既知挨次递加之数为三角形而位数与底数相乘之数为正方形又知位数与底数相乘之数几等于总积加一倍之数则合两三角形之数适当总积加一倍之方数矣两三角形所合其底数必比高数大一数故末数九为底数者加首数一与髙相乘始成两三角形所合之一方形焉试将此九数作防排之自上而下上一下九作为直角三角形复将此九数另作一直角三角形合于原三角形之侧则成一长方形其高即位数其底即末数与首数相加之数其积即为总数加一倍之数也然则首数末数相加与位数相乘为总数之倍数可知矣又如四五六七八九之六数欲知其总数亦以首数四与末数九相加得十三为底以位数六乘之得七十八为长方形折半得三十九为总数其理与前同若但知首数为四末数为九不知位数则视首数四以上至一虚几位今虚三位故以三与末数九相减余六即位数也何也凡自一递加之数其末数即位数今首数为四计自一是少三位矣故用三即为所少之位数于末数内减去所少之位即为今之所有之位数也第三十三
凡超位平加之数亦将首数与末数相加以位数乘之得数折半为总数也如一三五七九十一之六数【每次皆加二数】将首数一与末数十一相加得十二以位数六乘之得七十二折半得三十六为此六位之总数也葢此超位平加之数与挨次平加之理无异其以首末两数相加与位数相乘者总欲得此总数之倍数以便折半取之也试将此六位之数作六层排之上一下十一以首末数相加得十二而以位数乘之则六层皆为十二矣上层本首数一加末数十一而成十二下层本末数十一加首数一而成十二是首数末数俱加倍矣二层本第二数三加第五数九而成十二五层本第五数九加第二数三而成十二是第二数第五数俱加倍矣三层本第三数五加第四数七而成十二四层本第四数七加第三数五而成十二是第三数第四数亦俱加倍矣其每位之数皆倍则相乘所得之数岂非此总数之倍数乎由此推之毎次加三加四或加五加六以至加七加八加九之类凡系超位平加之数其理无不相同也
第三十四
凡毎次按位相加之数将位数加二与末数相乘取其三分之一即为总数也如一三六一十十五之五数其每次皆按位加之【如第二位于第一位一上加二为三第三位于第二位三上加三为六是也】将位数五加二与末数十五相乘得一百零五以三除之得三十五即是此五数之总数也如或止有位数或止有每一边数求总数则以位数加一与位数相乘得数复以位数加二乘之取其六分之一即得总数也【若止有每一边数即以每一边数加一与每边数相乘得数复以边数加二乘之取其六分之一得数亦同】葢毎次按位相加之数层叠排之其式成等边三角体其末一数即三角体底面数而位数即毎一边之数今以位数加二为髙末数为底相乘即成平行面之三棱体凡同底同髙之平行面体为尖体之三倍则此平行面三棱体内必有等边三角体之三倍故以三除之即得也然必以位数加二为髙者何也以三三角体相凑乃成上下相等之平行面体其髙必比原有之位数多二层【两三角面相合比原位数多一层今三三角体相合故必比原位数多二层也】如止以位数为高即少二层之数而不足三三角体之分故必以位数加二乘之也其止有位数或每一边数求总数以位数加一与位数相乘复以位数加二乘之而用六除者何也葢位数即底面之每边数而底面又为等边之三角面今以边数加一与边数相乘成长方面为三角体底面之倍数即如前挨次递加数之两三角面相合所成之长方形也凡等髙之体底数倍者积数亦倍彼以位数加二乘三角体之底所成之平行面三棱体既为等边三角体之三倍矣今以位数加二乘三角体之倍底所成之平行面长方体又必为等边三角体之六倍矣【以两三棱体相合即成长方体一三棱体为三角体之三倍则两三棱体必为三角体之六倍矣】故以六除平行面长方体之数而得等边三角体之数也又或但知首数末数而不知位数则以末数倍之用一为较数开纵平方即得位数焉葢末数倍之者即两三角面所合之长方也其阔即三角每边数其长比阔多一数故用一为较开带纵平方则得三角毎边之数既得每边数即得位数矣
第三十五
凡每次按位自乘相加之数将位数折半与末数相加复以位数加一乘之取其三分之一即为总数也如一四九十六二十五之五数其每位之数皆按位自乘之数【如第二位之四即二自乘数第三位之九即三自乘数也】将位数五折半为两个半与末数二十五相加得二十七个半复以位数五加一为六乘之得一百六十五以三除之得五十五即为此五数之总数也如止有位数或止有每一边数求总数则以位数加半个与位数相乘得数复以位数加一乘之取其三分之一即得总数也【若只有每一边数即以每一边数加半个与每一边数相乘得数复以每边数加一乘之取其三分之一得数亦同】葢按位自乘相加之数层叠排之其式成方底四角尖体其末一数即四角尖体底面数而位数即毎一边之数今以位数折半与末数相加则成长方面为底再以位数加一为髙乘之即成平行面之长方体凡同底同髙之平行靣体为尖体之三倍则此平行面长方体内必有四角尖体之三倍故以三除之即得也然必以位数折半与末数相加为底复以位数加一为髙者何也葢三四角尖体相凑乃成上下相等之长方体其底比正方面必多半行其髙必比原有之位数多一层【三等边三角体相合比三角体原位数多二层今三方底四角尖体相合比原位数止多一层葢因方底比三角底式大一倍故四角体髙比三角体髙所加之数减一半也】如止以末数为底则底必少半行之数止以位数为髙则髙复少一层之数必不足三四角尖体之分故以末数加位数之半而以位数加一乘之适足三四角尖体之分也其止有位数或每一边求总数以位数加半个与位数相乘复以位数加一乘之而用三除之者何也葢位数即底靣之毎边数而底面又为正方面今以边数加半个与边数相乘成长方面比正方止多半行之分其理即如求三角体总数以边数加一与边数相乘为三角体底之倍数也以位数加一与底面相乘成长方体比方底四角尖体大三倍即如求三角体总数以位数加二与倍底相乘为三角体之六倍也彼三角体底倍之为长方此四角体底数加半行即为长方彼三角体总数六倍爲同边长方体此四角体总数三倍为同边长方体故三角体以边数加一与边数相乘者今四角体以边数加半与边数相乘而三角体以位数加二为髙与倍底相乘者今四角体以位数加一与本底加半行相乘总之四角体底式比三角体底式大一倍故立法时三角体加数几何而此四角体皆用其半也又或但知首数末数而不知位数则以末数开平方即得位数焉葢末数本为正方数故开方即得毎边数既得毎边数则得位数矣
第三十六
凡每次倍加之数将末数与加倍之数相乘减去首数复以所加之分数除之即得总数也如二四八十六四数为毎次以二倍之之数欲求其总数则以末数十六用二乘之【因以二倍之故用二乘】得三十二减去首数二为三十复以其所加分数一除之仍得三十即此四数之总数也葢以二加倍之数其末一数比前几位之总数止多一首数故二乘末数则比末数多一分仍多一首数故减去首数二而以一除之即得总数也又如三九二十七八十一四数为毎次以三倍之之数欲求其总数则以末数八十一用三乘之【以三倍之故用三】得二百四十二减去首数三为二百四十复以其所加分数二除之得一百二十即为此四数之总数也葢以三加倍之数其末一数为前几数之倍数而仍多一首数今三乘末数则比末数多二分仍多一首数【三乘末数八十一则为八十一者有三除本数八十一仍为多二分也】故必减去首数三而以二除之即得总数也又如四十六六十四二百五十六四数为毎次以四倍之之数欲求总数则以末数二百五十六用四乘之【以四倍之故用四】得一千零二十四减去首数四为一千零二十复以其所加分数三除之得三百四十为此四数之总数也葢以四加倍之数其末一数为前几数之三倍而仍多一首数今四乘末数则比末数多三分仍多一首数【四乘末数二百五十六则为二百五十六者有四除本数二百五十六仍为多三分也】故必减去首数四而以三除之即得总数也凡此倍加之数不论加倍几何皆为相连比例之数故其比例皆同如递加二倍之数其四与八之比同于二与四之比即八与十六之比亦皆同于二与四之比也又如递加三倍之数其九与二十七之比同于三与九之比即二十七与八十一之比亦皆同于三与九之比也即递加四倍之数其十六与六十四之比同于四与十六之比即六十四与二百五十六之比亦皆同于一与四之比也总之以二倍加者皆一与二之连比例以三倍加者皆一与三之连比例以四倍加
者皆一与四之连比例即推之以五倍
加六倍加者其理亦无不相同也
御制数理精蕴上编卷五
<子部,天文算法类,算书之属,御制数理精蕴>
钦定四库全书
御制数理精蕴下编卷一
首部一
度量权衡
命位
加法
减法
因乘
归除
度量权衡
虞书同律度量衡葢度量衡皆本于律而律为万事之本也汉志曰度者分寸尺丈引所以度长短也本起于黄钟之长以子谷秬黍中者一黍之广度之九十分黄钟之长一为一分十分为寸十寸为尺十尺为丈十丈为引而五度审矣量者龠合升斗斛所以量多少也本起于黄钟之龠以子谷秬黍中者千二百实其龠合龠为合十合为升十升为斗十斗为斛而五量嘉矣权者铢两斤钧石所以权轻重也本起于黄钟之重一龠容千二百黍重十二铢两之为两十六两为斤三十斤为钧四钧为石而五权谨矣通考曰律度量衡并因秬黍散为诸法其率可通外此则代不一名度之异名者如左传注方丈曰堵三堵曰雉【长三丈高一丈】易纬通卦验十马尾为一分孙子算术曰蚕所吐丝为忽十忽为丝十丝为豪十豪为厘十厘为分十分为寸十寸为尺十尺为丈小尔雅曰跬一举足也倍跬谓之步四尺谓之仞倍仞谓之防倍防谓之常五尺谓之墨倍墨谓之丈倍丈谓之端倍端谓之两倍两谓之疋疋百谓之束孔安国又以八尺为仞説文曰人手却十分动脉为寸口十寸为尺周制寸咫尺防常仞皆以人体为法又曰妇人手八寸谓之咫周尺也又曰丈丈夫也周制以八寸为尺十尺为丈人长八尺故曰丈夫量之异名者如左传齐旧四量豆区鬴钟四升曰豆各自其四以登于鬴【六斗四升】鬴十则钟【六十四斗】论语注十六斗曰庾十六斛曰秉孙子算术曰六粟为圭十圭为抄十抄为撮十撮为勺十勺为合汉应劭又以四圭为撮孟康以六十四黍为圭小尔雅一手之盛谓之溢两手谓之掬掬四谓之豆豆四谓之区区四谓之釡釜二有半谓之薮薮二有半谓之缶缶二谓之钟钟二谓之秉秉十六斛衡之异名者如汉志注应劭曰十黍为累十累为铢小尔雅二十四铢曰两两有半曰防倍防曰举倍举曰锊锊谓之锾二锾四两谓之斤斤十谓之衡衡有半谓之秤秤二谓之钧钧四谓之石石四谓之鼔通考唐刘承珪以忽万为分丝则千豪则百厘则十转以十倍倍之则为一钱黍以二千四百枚为一两累以二百四十铢以二十四是则度量衡之名不一故其为制不同而纷杂难用然时易世殊古今沿革有必不可比而同者故入算之际不过取其大同者以审不齐之物耳要之度定扵丈量定扵石衡定于两大之而递进扵无穷小之而递析于不可测爰悉其名目扵左以为数学之所资焉
度法丈以下曰尺【十
【打 印】 【来源:读书之家-dushuzhijia.com】