十寸】寸【十分】分【十厘】厘【十豪】豪【十丝】丝【十忽】忽【十微】微【十纤】纤【十沙】沙【十尘】尘【十埃】埃【十渺】【十漠】漠【以下皆以十析】糢糊逡巡须臾瞬息弹指刹那六徳虚空清浄
量法石以下曰斗【十升】升【十合】合【十勺】勺【十撮】撮【十抄】抄【十圭】圭【六粟】粟
衡法两以下曰钱【十分】分【十厘】厘【十豪】豪【十丝】丝【十忽】忽以下并与度法同
凡度量衡自单位以上则曰十百千万亿兆京垓秭穰沟涧正载极恒河沙阿僧秪那由他不可思议无量数
自亿以上有以十进者如十万曰亿十亿曰兆之类有以万进者如万万曰亿万亿曰兆之类有以自乘之数进者如万万曰亿亿亿曰兆之类今立法从中数
厯法则曰宫【三十度】度【六十分】分【六十秒】秒【六十微】微【六十纤】纤【六十忽】忽【六十芒】芒【六十尘】尘
又有日【十二时又为二十四小时】时【八刻又以小时为四刻】刻【十五分】分以下与前同
田法则曰顷【百亩】亩【积二百四十步】分【积二十四步】
里法则三百六十步计一百八十丈为一里古称在天一度在地二百五十里今尺验之在天一度在地二百里葢古尺得今尺之十分之八实縁纵黍横黍之分也
石法二千五百寸【按汉志曰斛重二钧又曰四钧为石是二斛为一石也古尺斛积一千六百二十寸为今尺之八百六十寸有竒倍之得古尺石积三千二百四十寸为今尺之一千七百二十寸有竒以权法凖之石重一百二十斤求其积古尺应得三千一百一十寸为今尺之一千六百五十寸有竒今之权法又加古一倍则今尺石积应得三千三百寸有竒今现行斛积为一千五百八十寸石积为三千一百六十寸旧算书所载数各不同而多以二千五百寸为率摠之古今尺度不同古今量法亦不一须先求其斗斛之积数然后用其积数以比例之方得密合今设例从旧数】
命位
凡数视所命单位为本如度法命丈为单位则尺寸分厘皆为竒零命尺为单位则寸以下为竒零而丈则进而为十若命寸为单位则分以下为竒零而尺则进而为十丈则进而为百量法命石为单位则斗升合勺皆为竒零命斗为单位则升以下为竒零而石则进而为十若命升为单位则合以下为竒零而斗则进而为十石则进而为百衡法命两为单位则钱分厘豪皆为竒零命钱为单位则分以下为竒零而两则进而为十若命分为单位则厘以下为竒零而钱则进而为十两则进而为百故凡列数单为一位十为二位百为三位千为四位万为五位如有数一万二千三百四十五则以单位为末向前列之共有五位即知此数首位是万矣至扵厯法宫度分秒日时刻分之定位则每项命两位如宫曰几十几宫度曰几十几度分曰几十几分之类葢因秒以六十而进分分以六十而进度度以三十而进宫故常例一位即命一等者宫度时刻则两位命为一等而每一等有十单之别焉此又命位之最要者也
凡数未至单位者必须作○以存其位如有数一万二千三百四十丈则补作○以存单位如上式 又如有数一万二千丈则补作○○○以存百十单之位如下式
凡数单位后有竒零者必作防于单位上以志之如有金三百四十五两六钱七分命两为单位则于五上作防志之如上式 又如有米六石五斗四升三合命石为单位则于六上作防志之如下式
凡列众数几多位中有空者必作○以存其位如有数二万零四百五十六此中千位无数故必作○于万后百前以存其位如上式 又如有数一万零三十四此中千位百位俱无数故补作两○于万后十前以存其位如下式凡宫度分秒皆两位列之如有一十一宫二十度三十二分四十五秒列位如上式 又如日时刻分列位日时分则两位刻止一位列之如二十一日一十八时三刻零二分列位如下式
加减乘除
算法以加减乘除为入门然究其终虽至扵千变万化总不出乎此但用法不同耳或应取其相和之数则用加或应取其相较之数则用减或应聚而总其积则用乘或应散而取其分则用除又有先加而后减者或先减而后加者有先乘而后除者或先除而后乘者又有加减与乘除先后互用者古称九章命算自方田以至勾股数有繁简理有显晦法有浅深算有难易然何一不从加减乘除而得故浅言之则算法之入门究言之实算法之全体也
加法
加者合众数而成总也葢数始扵一终于九至十又复为一等而上之十百千万以至亿兆京垓皆得名之为一即皆自一而加者也今自一位言之有自一至九之数合前后之位言之有单十百千万之等先自单数加起成十则进前一位仍为一以单数纪本位下挨次并之即得总数若夫宫度时刻斤两之类则不以十进必足其所命之分始进一位【十于前位为一志之如宫度足六十分进一度足三十度进一宫如时刻足十五分进一刻足四刻进一时足二十四时进一日如斤两足】至于定位则以原数列扵上加数列扵下或大数列于上小数列于下按法依次对位列之加毕所得之数依原列之位定之
设如有数一万二千三百四十五与六千七百八十九相加
法以原数横列于上加数横列于下按位相对加之【十六两进一斤之类如九与五相对单从单八与四相对十从十百】单位之五【千万数俱各从其类】九相加得十四进【作一防于前位为志如进二十则作二防如进三十则作三防】本位纪四【书于横格下】次十位之四八相加得十二并所进之一
【打 印】 【来源:读书之家-dushuzhijia.com】