御制数理精蕴 - 第1部分

作者:【暂缺】 【272,344】字 目 录

八尺为中垂线也如图甲乙丙三角形甲乙为大腰甲丙为小腰乙丙为底甲丁为所求中垂线试以甲为心丙为界作一圜截甲乙大腰于庚截乙丙底边于戊又将甲乙大腰引长至己作甲己线与甲丙小腰等则己乙为两腰之和庚乙为两腰之较乙丙为底边之和乙戊为底邉之较其乙丙与乙己之比即同于庚乙与乙戊之比为转比例四率也

又法以大腰十七尺自乘得二百八十九尺又以小腰十尺自乘得一百尺两自乘数相减余一百八十九尺以底二十一尺除之得九尺为底边之较与底二十一尺相减余十二尺折半得六尺为勾以小腰十尺为求得股八尺为中垂线也图解同前

设如有斜立鋭角三角形大腰二十一尺小腰十七尺底十尺求形外垂线几何

法以底十尺为一率大腰二十一尺与小腰十七尺相减余四尺为二率大腰二十一尺与小腰十七尺相加得三十八尺为三率求得四率十五尺二寸为底与形外垂线两边连底之总内减去底十尺余五尺二寸折半得二尺六寸为勾以小腰十七尺为求得股十六尺八尺为形外垂线也如图甲乙丙三角形甲乙为大腰甲丙为小腰乙丙为底甲丁为所求形外垂线试以甲为心丙为界作一圜截甲乙大腰于庚又将甲乙大腰引长至己作甲己线与甲丙小腰相等复将乙丙底引长至戊作乙戊线则成甲乙戊三角形其乙丙为底邉之较乙戊为底边之和乙庚为两腰之较乙己为两腰之和自圜外至圜内所作两线之比例既同于圜外两叚转相比之比例则圜外两叚之比例亦必同于两全线转相比之比例故乙丙与乙庚之比即同于乙己与乙戊之比为比例四率既得乙戊则减乙丙余丙戊折半得丙丁为勾甲丙为求得股即甲丁垂线也

又法以大腰二十一尺自乘得四百四十一尺又以小腰十七尺自乘得二百八十九尺两自乘数相减余一百五十二尺以底十尺除之得十五尺二寸为底与形外垂线两边连底之总内减底十尺余五尺二寸折半得二尺六寸为勾以小腰十七尺为求得股十六尺八寸为形外垂线也如图甲乙丙三角形将乙丙底引长至戊自甲作垂线至丁则丁戊与丁丙等又自甲至戊作甲戊线与甲丙小腰等则成甲丁乙甲丁戊两勾股形甲乙甲戊皆为乙丁丁戊皆为勾共以甲丁为股而乙丙为两勾之较乙戊为两勾之和前法以和求较此法以较求和其理一也图解并同前

设如有鋭角三角形两腰俱五尺底六尺求面积几何

法先以底六尺折半得三尺为勾任以两腰之一边五尺为求得股四尺为中垂线与底六尺相乘得二十四尺折半得一十二尺为三角面积也如图甲乙丙三角形以乙丙底边与甲丁中垂线相乘成戊乙丙己长方形积比三角形积正大一倍故折半得三角积也

设如有钝角三角形大腰十七尺小腰十尺底二十一尺求面积几何

法先用求中垂线法求得中垂线八尺与底二十一尺相乘得一百六十八尺折半得八十四尺为三角面积也如图甲乙丙三角形先求甲丁垂线既得甲丁垂线乃与乙丙底边相乘成戊乙丙己长方形比三角形积正大一倍故折半得三角积也

又法以甲乙边十七尺乙丙边二十一尺甲丙边十尺三数相加得四十八尺为三边之总折半得二十四尺为半总以甲乙边十七尺与半总二十四尺相减余七尺为甲乙边与半总之较以乙丙边二十一尺与半总二十四尺相减余三尺为乙丙边与半总之较以甲丙边十尺与半总二十四尺相减余十四尺为甲丙边与半总之较乃以半总二十四尺为一率甲丙边与半总之较十四尺为二率乙丙边与半总之较三尺与甲乙边与半总之较七尺相乘得二十一尺为三率求得四率十二尺二十五寸开方得三尺五寸为三角形自中心至三边之垂线与三边之总四十八尺相乘得一百六十八尺折半得八十四尺即三角形之面积或以所得垂线三尺五寸与半总二十四尺相乘亦得八十四尺为三角形之面积也此法葢一率二率以线与线为比三率四率以面与面为比也如甲乙丙三角形自中心丁至三边各作一垂线又自中心丁至三角各作一分角线即成六直角三角形俱两两相等【丁巳丙与丁庚丙等丁巳乙与丁戊乙等丁戊甲与丁庚甲等】又按甲戊度引乙丙线至辛则乙辛为三边之半总即三较之和【乙巳与乙戊等即甲丙边与半总之较巳丙与丙庚等即甲乙边与半总之较丙辛与甲戊甲庚等即乙丙边与半总之较】试自辛作直角将乙丁线引长作一乙辛壬直角形则壬辛与丁巳平行乙辛壬形与乙巳丁形遂为同式形其乙辛与乙巳之比即同于壬辛与丁巳之比然乙辛一率乙巳二率之数虽有而壬辛之数却无又但知巳丙与丙辛相乘之数即丁巳与壬辛相乘之数故以巳丙与丙辛相乘之数为三率【何以知巳丙与丙辛相乘之数即丁巳与壬辛相乘之数试作壬丙线壬癸线使丙癸与丙辛等癸角辛角皆为直角癸丙辛角与辛壬癸角相合共成一百八十度然庚丙巳角为癸丙辛角之外角相合亦共成一百八十度是庚丙巳角与辛壬癸角等庚丁巳角与癸丙辛角等是以壬癸丙辛形与丙庚丁巳形为同式形而丙辛壬勾股形与丁己丙勾股形亦为同式形可互相比例矣以丁己作一率巳丙作二率丙辛作三率即得四率壬辛是以巳丙二率与丙辛三率相乘之数即与丁巳一率与壬辛四率相乘之数等故直以己丙丙辛相乘之数作三率也】其所得四率即丁己自乘之数是故乙辛与乙巳之比同于丁己与壬辛相乘之面【即己丙与丙辛相乘之面】与丁己自乘之面之比也既得丁己自乘之面故开方而得丁巳为三角形自中心至三边之垂

打 印】 【来源:读书之家-dushuzhijia.com】