则一率与二率之比即如三率与四率之比也夫甲乙丙丁四线内甲第一线与丙第三线俱各定为六分乙第二线与丁第四线俱各定为五分则甲度之长虽大于丙度之长其分数则俱为六而乙度之长虽大于丁度之长其分数亦俱为五故知乙第二线度与甲第一线度之六分之五分相等丁第四线度亦与丙第三线度之六分之五分相等所以甲线之比乙线即如丙线之比丁线而谓之同理比例也
第四
凡四率两两相比其一率与二率相比之分若大于三率与四率相比之分则为不同理之比例而比例不得行也如有甲乙丙丁四数甲与乙丙与丁各互相为比苟甲第一数与乙第二数相比之分为六与四其丙第三数与丁第四数相比之分为五与四则此甲与乙之比大于彼丙与丁之比矣故凡如此例者以一率二率相比之分为凖则三率四率相比之分为小若依三率四率相比之分为准则一率二率相比之分又大故谓之不同理之比例而比例四率不能行也
第五
凡有四率一率之度与二率之度相比分数若同于三率之度与四率之度相比分数则此四率又谓之相当比例四率焉如甲乙丙丁四线苟甲线与乙线相比之度与丙线与丁线相比之度其分数同则此四线谓之各相当线而毎两率相比其毎度之分数同故又谓之相当比例四率也
第六
凡三率互相为比其一率与二率之比同于二率与三率之比则谓之相连比例率也如甲乙丙三数互相为比苟甲数与乙数之比同扵乙数与丙数之比则此甲乙丙三数谓之相连比例率矣若相连比例率内将一率与三率比之则为隔一位加一倍之比例或有相连比例四率将一率与四率比之则为隔二位加二倍之比例大凡有几率隔几位以比者皆以隔几位而为加几倍之比例也如甲乙丙相连比例率内其甲与丙之比为隔一位加一倍之比例又或甲乙丙丁戊五数俱为相连比例率其甲与丁之比即为隔二位加二倍之比例而甲与戊之比则又为隔三位加三倍之比例矣
第七
相当比例四率为数学之要因其理之所该最广故设为双圜图以申明之立甲防为心作乙丙一大圜丁戊一小圜此二圜界各具三百六十度故皆可以为三百六十分【首卷第十七节云凡圜无论大小俱定为三百六十度】于是自圜之甲心过小圜界之辛壬二处至大圜己庚二处作二线则大圜之己甲庚小圜之辛甲壬俱同一甲角此甲角相对之己庚弧界设为六十度则为乙丙大圜三百六十分中之六十分矣乙丙大圜之己庚弧界度既为六十分则丁戊小圜之辛壬弧界度亦为六十分矣大凡角度俱定于相对之圜界【见首卷第九节】今此大圜之己庚弧界小圜之辛壬弧界俱与一甲角相对其度虽依圜之大小不同而分数则等分数既等则大圜小圜大弧小弧两两互相为比即如四率之两两相比为同理比例矣是以大圜之三百六十分为一率自大圜所分之己庚弧之六十分为二率小圜之三百六十分为三率自小圜所分之辛壬弧之六十分为四率其乙丙大全圜与本圜己庚分之比即同于丁戊小全圜与本圜辛壬分之比也故凡各率各度虽异相当之分数若同则一率与二率之比必同于三率与四率之比而俱谓之顺推比例矣要之分合加减各率之法总不越此图之互转相较之理也
第八
一种反推比例将一率与二率之比同于三率与四率之比者反推之以二率与一率为比四率与三率为比其所比之例仍同故亦谓之相当比例率也如甲乙丙丁四数将甲与乙之比同于丙与丁之比反推之以乙与甲为比丁与丙为比则所比之例仍同于相当比例率焉以前双圜图解之葢甲数与乙数之比例即乙丙大圜全界与所分己庚弧界之比例丙数与丁数之比例即丁戊小圜全界与所分辛壬弧界之比例也今反以乙与甲为比丁与丙为比即如以乙丙大圜所分之己庚弧界与乙丙大圜全界为比丁戊小圜所分之辛壬弧界与丁戊小圜全界为比也因其以二率为一率以三率为四率前后互移故谓之反推比例然名虽为反推比例而相当比例之率仍与顺推比例相同也
第九
一种递转比例将一率与二率之比同于三率与四率之比者转较之以一率与三率为比二率与四率为比其所比之例仍为相当比例率也如甲乙丙丁四数将甲与乙之比同于丙与丁之比转较之以甲与丙为比乙与丁为比则所比之例仍同于相当比例率也如前双圜图乙丙大圜全界一率与所分巳庚弧界二率之比同于丁戊小圜全界三率与所分辛壬弧界四率之比若转较之以乙丙大圜之一率与丁戊小圜之三率为比大圜所分之巳庚弧界二率与小圜所分之辛壬弧界四率为比其度虽依圜之大小有异而分数则同其比例仍同于原比例故甲乙丙丁之四数亦如大小二圜为互相比例之率而甲一率与丙三率之比即大圜与小圜之比乙二率与丁四率之比即大圜所分弧界与小圜所分弧界之比也葢以三率为二率以二率为三率递转相较故谓之递转比例其相当比例之四率虽递转以较之亦仍为相当比例之四率也
第十
一种分数比例彼四率之中以一率与二率之比同于三率与四率之比矣若将此相比之率所较之分截开以一率与二率之较为一率与二率为比以三率与四率之较为三率与四率为比则其所比之例仍为相当比例率也如甲乙丙丁四数于甲数内减去乙数之分为戊巳丙数内减去丁数之分为庚辛乃以戊己易甲与乙线为比以庚辛易丙与丁线为比则所比之例仍同于相当比例率也如前双圜图于乙丙大圜全界内减去所分己
【打 印】 【来源:读书之家-dushuzhijia.com】