十五相等两三角形之一角等即等角旁之各两边互相视两三角形之一角等而等角旁之各两边互相视即两三角形等如甲乙丙乙丁戊两角形等两乙角又等此等角旁之各两边甲乙与乙戊之
比例若丁乙与乙丙也反言之亦可
十六四直线为断比例即首尾两线矩内直角形与中两线矩内直角形等首尾两线与中两线两矩内直角形等即四线为断比例如甲乙丙丁四线为断比例甲与乙若丙与丁而戊形系甲丁首
尾两线矩内直角形己形系乙丙中两线矩内直角形则戊己两形必等反言之亦可
十七三直线为连比例即首尾两线矩内直角形与中线上直角方形等首尾线矩内直角形与中线上直角方形等即三线为连比例如甲乙丙三线为连比例甲与乙若乙与丙而丁形系甲丙首尾两
线矩内直角形戊形系乙上直角方形则丁戊两形必等反言之亦可
十八直线上求作直线形与所设直线形相似而体势等如甲乙线先设丙丁戊己庚形任从一角向各对角各作直线而分本形为若干角形如作己丙己丁分为丙丁己丁己戊丙己庚
三三角形次于甲乙上作甲壬乙角形与丙己丁等角次作乙壬辛与丁己戊等角又作甲壬癸与丙己庚等
角则甲乙辛壬癸与丙丁戊己庚相
似而体势等矣凡设多角形俱仿此
又法如设甲乙丙丁戊己形求于庚
线上作相似而体势等形先引甲乙
至辛甲丑亦然次从甲向角各作直线为甲壬甲癸甲子次于甲乙线上截取甲辛与庚线等不论其在乙内外末作辛壬与乙丙平行作壬癸与丙丁平行作癸子与丁戊平行作子丑与戊己平行即所求
十九相似三角形之比例为其相似边再加之比例如甲乙丙丁戊己两角形等角乙与戊丙与己相当之角各等而甲乙与乙丙之比例若丁戊与戊己则两形之比例为乙丙与戊己两边再加
之比例也
又凡三直线为连比例即第一线上角形与第二线上角形之比例若第一线与第三线之比例也
二十以三角形分相似之多边直线形则分数必等而相当之各三角形各相似其各相当两三角形之比例若两元形之比例为两相似边再加之比例如此甲乙丙丁戊彼己庚辛壬癸两多边直线形其乙甲戊庚己癸两角等余相当之各
角俱等而各等角旁各两边之比例各等则各以角形分之其分数必等如题所云
又甲线倍大于乙线则甲上方形与乙上方形为四倍大之比例
又凢三直线为连比例其线上多边形一与二之比例若一与三
二十一两直线形各与他直线形相似则自相似二十二四直线为断比例则两比例线上各任作自相似之直线形亦为断比例两比例线上各任作自相似之直线形为断比例则四直线为断比例
二十三等角两平行方形之比例以两形之各两边两比例相结如甲丙丙己两平行方形之乙丙丁戊丙庚两角等则两比例之前率在此形两比
例之后率在彼形如甲丙与丙己之比例以乙丙与丙庚偕丁丙与丙戊相结也或以乙丙与丙戊偕丁丙与丙庚相结此乃不同理之比例也
二十四平行线方形之两角线方形自相似亦与全形相似如甲乙丙丁平行方形作甲丙对角线任作戊己庚辛两线与丁丙乙丙平行而与对角
线交相遇于壬则戊庚己辛两角线方形自相似亦与全形相似
二十五两直线形求作他直线形与一形相似与一形相等如甲乙两形先于甲形任取一边如丙丁上作平行方形与甲等为丙戊次于丁戊边上作平行方形与乙等而丙丁庚己戊辛
俱为直线也次作壬癸线为丙丁丁庚之中率次于壬癸上作子形与甲相似而与乙等
通曰似者形似也等者容等也体势等者非容等也二十六平行方形之内减一平行方形其减形与元形相似而体势等又一角同则减形必依元形之对角线如乙丁形内减戊庚形元形减形相似而体势等又戊甲庚同角则戊庚形必依乙丁形之对
角线
二十七凡依直线之有阙平行方形不满线者其阙形与半线上之阙形相似而体势等则半线上似阙形之有阙依形必大于此有阙依形如甲乙线平分于丙于半线丙乙上任作丙丁戊乙平行方形
对角线乙丁次作甲乙戊辛满元线平行方形即甲丁为甲丙半线上之有阙依形丙戊为丙乙半线上之阙形此两形相似相等体势又等则甲乙线上凡作有阙依形不满线者其阙形与丙戊相似而体势等即甲丙半线上之甲丁有阙依形必大于此有阙依形
二十八一直线求作依线之有阙平行方形与所设直线形等而其阙形与所设平行方形相似其所设直线形不大于半线上所作平行方形与所设平行方形相似者如甲乙线平分于戊于戊乙半线上作戊己庚乙平行方形与丁相似而体势
等次作甲辛庚乙满元线平行方形若甲己平行方形与丙等者即得所求甲己依线之有阙平行方形也戊庚阙形也
二十九一直线求作依线之带余平行方形与所设直线形等而其余形与所设平行方形相似如甲乙线平分于戊于戊乙半线上作戊己庚乙平行方形与丁相似别作平行方形与丙及戊庚并相等为辛形又别作平行方形与辛
等又与丁相似为壬癸子丑形乃引己戊至卯与壬丑等引己庚至寅与壬癸等作夘寅平行方形与申等又引甲乙至酉引庚乙至午引午卯至未又作甲未与己卯平行得甲辰带余平行方形依甲乙线与丙等而酉午为其
【打 印】 【来源:读书之家-dushuzhijia.com】