御制数理精蕴 - 第6部分

作者:【暂缺】 【113,641】字 目 录

并句股为法除得容方径句乗股倍之并句股除之得容圆径而容圆之径即和较也又错综论之句为主以加股较即较较以减股较即和较若加较和又即股和也股为主以加句较即较和以减句较即和较若加较较又即句和也句股较为主以加股较即句较若减股和亦即句和也句股和为主以加股较复得句和若减股和亦得句较也至若诸较诸和法相因配连缀减半恒得所求若取句股较以加句股和半之得股以减句股和半之得句若取股较以加股和半之得以减股和半之得股取句较者以加句和半之得以减句和半之得句取和较者以加和和半之得和以减和和半之得勾股取较较者以加较和半之得以减较和半之得较加减乗除圆变不滞神而明之存乎其人逺近髙深方圆弧矢准此而推亦在乎熟之而已

觧注【以句三股四五为准】

句股和自乗倍实相减开其余即句股较

如句【三】股【四】和七自乗四十九如【五】实二十五倍之五十以四十九减五十余一即句三股四之较一

句股较自乗以减倍实开其余即句股和

如句股较一以减倍实之五十余四十九开方得七即句三股四之和七

并句以除股实得句较

如句【三】【五】并之得八以除股【四】之实一六得二为句【三】【五】之较二

句较除股实即得句和

如句【三】【五】之较二以股【四】之实一六除之得八为句【三】【五】之和八

并股以除句实得股较

如股【四】【五】并得九以句三之实九除之得一为股【四】【五】之较一

以股较除句实即得股和

如股【四】【五】之较一以句三之实九除之为股【四】【五】之和九

句股和自乗减实除以较较得较和

如句【三】股【四】之和七自乗得四十九减【五】之实二十五余二十四以句股差【一】与【五】相减之较较四除之得六为句股之差【一】与【五】并之较和六

除以较和即得较较

如二十四以较和之六除之得四为句股之差一减五之较较四

句股较自乗减实除以和和则得和较

如句【三】股【四】之较一自乗仍得一减【五】之实二十五为二十四以句三股四五之和和除之得二为并句【三】股【四】与【五】较之和较

除以和较即和和

如二十四除以和较之二得一十二为句三股四五相并之和和

句股测望论【唐荆川先生】

句股所谓矩也古人执数寸之矩而日月运行朓朒迟速之变山谿之髙深广逺凡目力所及无不可知葢不能逃乎数也句股之法横为句纵为股斜为句股求句股自乗相并为实平方开之得句求股句自乗相减为实平方开之得股股求句同法葢一实藏一句一股之实一句一股之实并得一实也数非两不行因句股而得因股而得句因句而得股三者之中其两者显而可知其一者藏而不可知因两以得三此句股法之可通者也至如逺近可知而高下不可知如卑则塔影髙则日影之类塔影之在地者可量而人足可以至于戴日之下而日与塔髙低之数不可知则是有句而无股三者缺其二数不可起而句股之法穷矣于是有立表之法葢以小句股求大句股也小句股每一寸之句为股长几何则大句股每一尺之句其长几何可知矣此以人目与表与所望之高三相值而知之也人目至表小也人目至所望之髙大也又法表为小股其髙几何与至塔下之数相乗以小句除之则得塔髙葢横之则小股至塔之积纵之则为小句至塔顶之积纵横之数恰同是变句以为股因横而得纵者也句股三者有一可知则立表之法可得而用若其高与逺之数皆不可知而但目力可及如隔海望山之类则句股三者无一可知而立表之法又穷矣于是有重表之法葢两表相去几何为影差者几何因其差以求句股亦可得矣立表者以通句股之穷也重表者以通一表之穷也其实重表一表也一表句股也无二法也

句股容方圆论

凡竒零不齐之数准之于齐圆准之于方不齐之圆准于齐之圆不齐之方准于齐之方句股容圆准于句股容方假令句五股五七有竒此为整方均齐无较之句股其容方径该得句之半盖容方积得句股全积四分之一其取全积时句股分在两亷则句五股五五五二十五内一半为句积一半为股积其求容方则并句股为纵一亷得十为长之数得阔二五与原句相半盖始初则一半句积一半股积横列之而为正方及取容方则股积在上句积在下而为长方矣其容方所以止得半句者则以句股之数均也若句短股长则容方以渐而阔不止于半句矣故大半为股积小半为句积其始横列时句积与股同长而不同阔其纵列时则股积之阔如故而句积截长以为阔则阔与股积同而长与股积异与横列正相反此变长为阔而取容方之法也其谓之句积股积者从容方径与句股相乗之数而名之也若取容圆径则用句股自之而倍其数以句股与并为法盖容圆之径多于容方方有四角与相碍故其数少圆宛转故其数多若以求容方与求容圆相比则积中恰少一叚圆径与半和较相乗之数和较者句股并与相较之数也假令句五股五相乗亦倍之得五十如求容方则亦倍句股为法得二十亦恰得二寸五分之径如求容圆则不用倍句股为法而用一句股并与一是以一代一句股倂也以一代一句股并恰少一和较加一和较则亦两句股矣假令一句股得十倍句股得二十是取容方之径一句股得十一得七恰少和较三是取容圆之径其所以少一和较者圆径多于方径也假令取容圆不用句股倍积而止用句股本积则宜句股并为亷而除去半和较亦得或约得圆径之后与半和较相乗添积而以句股并为亷不除亦得或用句股倍积用两句股相并为亷而以全和较与约得圆径相乗添积亦得此改方为圆之妙其机括只寓之于和较间也至于句股积与积亦只于句股较中求之盖数起于参伍参伍起于畸零不齐也假令句五股五齐数之句股则句股幂倍之即得幂盖两句股积而成积也至于句短股长相乗之积则成一长方倍之而侧不当中径亦不成幂维以一句股较积补之乃能使长方为一正方而得积盖句股之差愈逺则长方愈狭长方愈狭则句股之差积愈多故句股差者所以权长方不及正方之数以相补辏此补狭为方之法也右荆川先生论句股测望论句股求容方圆详矣尽矣愚按句股测望即句股求容方法而变化用之但容方则以句股求容方而测望则以容方求句股非有二法也盖凡平方形若中间十字界之则为容方者四若斜界之则此一半平方之内其为完全容方者一而完全容方之外两角凑成亦必与此完全之容方相等此就句股等长而言也至句股不必等长而同此一容方则句长者股必短股长者句必短亦千变万化自有一定之盈缩也于是通之为测望之法以表代容方边以表前积实代容方之积实若所容为长方则必句短股长若所容为匾方则必股短句长股为纵为髙句为横为逺以或句或股为法除之即得所求之或髙或逺故望髙测逺即变化于句股求容方之一法也

测量法

句股之术可御髙深广逺法本周髀中法用表测西法用矩测

立表测高

设甲防为髙自丙至乙逺二丈求甲乙髙几何

法依地平线立一丈之表为丁丙【逺乙二丈】与地平为直角【凡立表以线下试之三靣附表即与地平为直角】依地平线退行【八尺】为辛巳【巳为人日望处人目以下六尺若立竿为准亦可】视己丁甲三防

令成斜以丁丙表【一丈】减己戊人目以下之六尺余丁辛【四尺】与等戊乙之巳庚【二丈八尺】乗之得【一十一丈八尺】为实以等戊丙之巳辛【八尺】为法除之得甲庚【一丈四尺】加等己戊人目以下之庚乙【六尺】得甲乙髙二丈按此以丁辛与已庚相乗得实以巳辛为法除之得甲庚之髙即已以上之髙若以丁辛乗壬庚得实以已辛为法除之得甲壬之髙即丁以上之髙

附西法三率算术【西法三角八线全用三率算术其法详三角前此先附其略】

三率算术详西法三角八线书中其法同类为比例列一二三四率而二率三率相乗得实一率为法除之四率为所求之数凡言以者为一率言比者为二率言若者为三率言与者为四率如前立表测髙以己辛【小句】比丁辛【小股】若己庚【大句】与庚【甲大股】

一率己辛八尺为法

二率丁辛四尺与三率相乗得实三率己庚二丈八尺

四率庚甲一丈四尺【加庚乙人目以下得甲乙髙】

打 印】 【来源:读书之家-dushuzhijia.com】

首页上一页2829303132 下一页 末页 共32页/64000条记录