之一各度加重之比同于纬度正弦幂之比也地径与日径比若一与一百十一五地径与黄道径比若一与二万三千九百八十四故日之地平视差为八秒六各度视差之比同于视距天顶正弦之比也赤极环绕黄极二万五千八百六十八年一周为诸星所摄动而黄赤大距古大今小约百年差四十八秒其最大差为一度二十一分赤极又为月所摄动而成小椭圆之行长径十八秒五短径十三秒七四凡十九年一周长径恒向黄极故大距又有微差矣地以二十四小时旋转一周而考之钟表亦有微差一为椭圆迟疾差近最高则行迟而自转有减分近最卑则行疾而自转有加分一为黄赤升度差近二分则黄道一度当赤道不足一度故自转有加分近二至则黄道一度当赤道一度有余故自转有减分合二差以加减平时即真时也光行之速一秒凡五十五万五千里而地行黄道一秒仅五十五里故光速率与地速率若半径与二十秒五之正切是为光行差近地恒有蒙气能令七政升卑为高地平视差三十三分地平以上渐小而其差又随时随地不同此必征诸实测非算术所能御矣
月绕地而又绕日其旋转于本心与环绕乎地球皆二十七日七小时四十三分十一秒五而一周故月向地之面终古不易也月行白道与黄道斜交其角五度八分四十八秒交点退行于黄道每日三分十秒六四故月行南北二十七日二一二一而一周即交终也白道椭圆而地不正当椭圆之中两心差最大最小之比若三与二其中数为五四八四四二最高每日顺行六分四十一秒八故月行迟疾二十七日五五四五而一周即转终也月行于椭圆周每日十三度一七六四亦以面积为平行角度为实行与太阳同中距月视径三十一分七秒大小之比亦为月距地之反比矣月地之行每日差十二度一九七五积二十九日十二小时四十四分二秒八七而复合是为一月地径与月径比若一与二七二九地径与白道径比若一与五十九九六四三五故月之地平视差其中数为五十七分六秒也日月二半径和加月地平视差其最大者一度三十四分二十七秒日月两心距小于此数则地面必有见食之处故日食限之距交为十六度五十八分法自日体之两边各作与月体相切引长之成尖圆其尖或过地或不及地若以两交互切月引长至地界内即生淡影人在淡影中则见食在尖圆中则见食既也月与内虚二心距等于月外虚二半径和即月入外虚之时等于月内虚二半径和即月入内虚之时故月食限之距交为十一度二十一分法自日体之两边各作与地球相切引长之成尖圆即内虚也若以两交互切地引长之过月体即外虚也日光透过蒙气则折而下其交外虚之角即倍地平蒙气差其交内虚之角即倍蒙气差与日视径之较月八外虚为昏黄色入内虚则浅者为蓝绿色深者为红紫色也凡摄力之大小与相距之平方有反比例月距地心约地半径之六十倍故地摄月力为地面摄力三千六百之一日之摄力甚大于地而日地距大于月地距约四百倍故日摄月力仅得地摄月力一百七十九之一也白道长径与地之行每日差五十二分二十七秒二五积二百五日八九四而复合此一合中两心差有增减长径亦有进退而增减进退之差在最高者较大在最卑者较小大小之比若二十八与二十五矣朔望前二象限切力恒令速率增增则长径变长朔望后二象限切力令恒速率减减则长径变短又朔望左右各五十四度四十四分法力向外令曲率略小两弦前后各三十五度十六分法力向内令曲率略大其最大差为一度四分一月而复名二均差也月受日之摄力朔时距日近而略大望时距日远而略小故日心斜交地月之令月增减于椭圆行其最大差为二分名月角差也地行于椭圆周最高后距日渐近则日摄月力渐大最卑后距日渐远则日摄月力渐小其最大差为十一分一岁而复名年差也二千年间地道两心差恒变而小约百年差二万五千分之一则年差亦微有不同而月之平速恒变而大约百年差十一秒九其一终之时甚久未能征诸实测也二体相距必有重心其距二体心远近之比若二体轻重之比联日地为一直其公重心在日体中联月地为一直其公重心在地球中故月地之公重心绕日地之公重心而自人视之一若月绕地而地又绕日焉然因此而日之经度亦有微差一月而复因名之曰月差其最大者不能至八秒六八秒六者日之地平视差也白极环绕黄极十八年六而一周而赤道既退行于黄道又退行于白道则赤极所行方向恒正交赤白二极距故不成正圆而为次摆其速率亦时大时小二道所生二差之比若二与五矣
五星绕日而行轨道并为椭圆与地球同其两心差各以长半径准之水星二五五一四九金星六八六七火星九三三七木星四八一六二一土星五六一五五距日中数以地道半径准之水星三八七九八一金星七二三三三一六火星一五二三六九二三木星五二二七七六土星九五三八七八六一地与五星周时平方之比各同于距日立方之比推得五星之恒星周水星八十七日九六九二五八金星二百二十四日七七八七火星六百八十六日九七九六四六木星四千三百三十二日五八四八二一土星一万七百五十九日二一九八一七其交黄道之角水星七度九秒一金星三度二十三分二十八秒五火星一度五十一分六秒二木星一度十八分五十一秒三土星二度二十九分三十五秒七其交点与最高点行皆甚迟故联两交点为一恒平分黄道焉外星之摄动内星也于内道上取距外星等于日距外星之两点内星自等距点至交点者交点退而后自交点至等距点者交点进而前内星之摄动外星也二道相距小于内道距日者于内道上取距日与外星相等之两点其交点之进退与外星摄内星同二道相距大于内道距日者二星在交之两边交点退而后在交之一边交点进而前若二星中有一星正当交点则交点不动矣二道渐相近而摄力又引之近二道渐相远而摄力又推之远则交角变大二道渐相近而摄力反推之远二道渐相远而摄力反引之近则交角变小引之近者交点退推之远者交点进故交角之大小与交点之进退不相应也法力能变曲率向内则曲率增向外则曲率减切力能变速率顺则速率增逆则速率减故法力向内而星近高点则长径退近卑点则长径进自高至卑则两心差增自卑至高则两心差减法力向外者反是切力顺而星近高点则两心差减近卑点则两心差增自高至卑则长径退自卑至高则长径进切力逆者反是是两心差与最高行互为消长而切法二力亦互为消长故五星之椭圆周古今不甚相远也人视五星见其忽顺忽逆忽留若无法者因地不在星道之心而又绕日环行故也若自太阳视之则有迟疾而无留退故求地心经纬度当以日心经纬度为根先用弧三角形直角为一角星道交黄道角为一角最卑交点二经度较为两角所夹之弧求得对直角之弧以加减星距最卑度即星距交度仍以直角为一角星道交黄道角为一角星距交度为两角所夹之弧求得对交角之弧即日心纬度又求对直角之弧以加减交点距春分度即日心经度也次用平三角形直角为一角日心纬度为一角星距日为对直角之边求得纬度角之对边为星距黄道又求得两角所夹之边为星对边又以星对边为一边地距日为一边星地二日心经度较为两边所夹之角求得对角之边为日对边又求地距日之对角以加二日心经度较再加地之日心经度即星之地心经度又以日对边与星距黄道为夹直角之两边而求星距黄道之对角即地心纬度也土木二星之互相摄动也二星一合为七千二百五十三日四积至三合则土二周木五周而多八度六分以除三百六十度又以一合日数乘之得三十二万二千三百七十三日约八百八十三年然其差因积久而大故九百十八年而一周此一周中一星速率增而周时变短则一星速率减而周时变长其最大差土星四十九分木星二十一分二星经度之比若二星体积各乘长径平方根之反比也金星之摄动地球也一合为五百八十三日九二积至五合则地八周金十三周而少二度二十四分以除三百六十度又以一合日数乘之得八万七千五百八十八日约二百四十年而一周此一周中地速率减则日地中距变大地速率增则日地中距变小其差甚微然因此而月之速率亦有增减其最大差为二十三秒金星摄力又有直加于月者地转三终则金转五终而多二十七日十三小时七分三十五秒六较月转终少十分五十六秒七约为三千六百二十五分月转终之一凡二百七十三年而一周其最大差为二十七秒四是又在日地二摄力之外矣五星地半径差并小于月测之甚难而联日星与地为三角形则星距日与地距日若星距日度正弦与地道半径差之正弦此差一年而周与光行差相似若以光行星与地道差为夹直角之两边而求地道差之对角即星所在之度也
彗星行法与五纬同而椭圆之长径甚长两心差甚大故或数十年而一见其差甚多不能尽知其根数也因格彗半长径二二一六四两心差八四七四三六交黄道角十三度七分三十四秒凡三年一一而一周迪未谷彗半长径三九九四六两心差六一七二五六交黄道角二度五十四分四十五秒凡五年一六七而一周勃陆孙彗半长径三一五二一两心差七九三六二九交黄道角三十度五十五分七秒凡五年二一六而一周比乙拉彗半长径三五一八二两心差七五五四七一交黄道角十二度三十四分十四秒凡六年二二而一周飞彗半长径三八一一七九两心差五五五九六二交黄道角十一度二十二分三十一秒凡七年一六一而一周达唳彗半长径六三二六六两心差七五六七二交黄道角三十一度二分十四秒凡十五年三二五而一周好里彗半长径一七九八七九六两心差九六七三九一交黄道角十七度四十五分五秒逆行凡七十六年一六而一周又有干隆三十五年之彗两心差七八五八交黄道角一度三十四分凡五年半而一周道光二十三年之彗最卑距日五五八交黄道角三十五度三十六分二十九秒逆行凡二十一年八七五而一周又有顺治十八年之彗约一百二十九年而一周嘉靖三十五年之彗约二百九十二年而一周康熙十九年之彗约五百七十五年而一周上考往古有当见而不见者必近日而昼见有虽见而先后一二年则为他星所摄动也干隆五十一年至道光十八年因格彗已十五周每周减百分日之十一洪武十一年至道光十五年好里彗已六周每周增千分年之四百四十五增减之故未得而详彗之头如星气渐近中心渐厚尾恒背日盖太虚中之薄气故借日光而明有时隔彗能见恒星知其为薄气而非实体矣
代微积拾级序
李善兰
几何之学自欧几里得至今专门名家代不乏人粤在古昔希腊最究心此学尔时以圜锥诸曲之理为最精深亚奇默德而后其学日进至法兰西代加德立纵横二轴推曲内诸点距轴远近自有此法而凡曲无不可推故曲之数多至无穷而以直为限一例用曲之法驭之既得诸曲依代数理推之可得诸平面诸曲面诸体其已推定之曲略举其目曰平圜椭圜双抛物半立方抛物薜荔叶蚌摆余摆和音次摆弦切诸指数对数亚奇默德螺对数螺等角螺交互螺两端悬葛西尼诸椭圜平行动而圜锥诸曲与他曲统归一例无或少异此代数几何学也自有代数几何而微分学之用益大微分学非一时一国一人所作其源流远矣数学有数求数代数无数求数然所推皆常数微分能推一切变数创法者不一家理同而术异求本之者日尔曼人也立界说曰以小至无穷之点积至无穷多推其几何名为推无穷小点法难者曰无穷小之点虽积之至无穷不能成几何解之曰但易无穷小为任何小即有积可推矣故其说虽若难解而其理未始不合也而英国奈端造首末比例法不用无穷小之长数乃用有穷最小长数之比例而推其渐损之限其几何变大则为末限变小则为首限此法便于几何而不便于代数后造流数术弃不用而谓万物皆自变其变皆有速率凡几何俱可用直显之故速率之增损可用直之界显之此说学者皆宗之嘉庆末法兰西特浪勃造限法自云不过用柰端首末比例耳而兰顿别创新法凡微分一凭代数不云任近限而云已得限名曰賸理拉格浪亦造法多依附戴老之理大略与兰顿同总论之微分不过求变几何最小变率之较耳家数虽多理实一焉奈端来本之同时各精思造法未尝相谋相师也奈端于元上加点以显流数如申为甲之流数是也用以推算觉不便故用来氏之彳号以显之积分者合无数微分之积也亦用来氏之禾号以显之微分积分为中土算书所未有然观当代天算家如董方立氏项梅侣氏徐君青氏戴鄂士氏顾尚之氏暨李君秋纫所着各书其理有甚近微分者因不用代数式故或言之甚繁推之甚难今特偕李君译此书为微分积分入门之助异时中国算学日上未必非此书实基之也
代微积拾级序
伟烈亚力
中法之四元即西法之代数也诸元诸乘方诸互乘积四元别以位次代数别以记号法虽殊理无异也我 朝康熙时西国来本之奈端二家又创立微分积分二术其法亦借径于代数其理实发千古未有之奇秘代数以甲乙丙丁诸元代已知数以天地人物诸元代未知数微分积分以甲乙丙丁诸元代常数以天地人物诸元代变数其理之大要凡线面体皆设为由小渐大一刹那中所增之积即微分也其全积即积分也故积分逐层分之为无数微分合无数
【打 印】 【来源:读书之家-dushuzhijia.com】