新法算书 - 第1部分

作者:【暂缺】 【207,205】字 目 录

二线上之体与第一线上之体若四率连比例线之第四与第一假如丙乙元体之边求倍体之边则倍丙

乙得甲丁以甲丁乙丙作壬己辛庚矩

形于壬角之两腰引长之以形心为心

如戊作圏分截引长线于子于午渐试

之必令子午直线切矩形之辛角乃止

即乙丙【即辛庚】午庚子己甲丁【即壬庚】为四率连比例线用第二率午庚为次体之一边其体倍大于元体【详双中率论】若甲丁为乙丙之三倍四倍即午庚边上之体大于元体亦三四倍以上仿此 用前法则元体之边倍之得八倍体之边若三之得二十七倍体之边四之得六十四倍体之边五之得一百二十五倍体之边

又取二倍体边倍之得十六再倍得一二八倍体之边本线上量体任用其边其根其面其对角线其轴皆可用法一 设一体求作同类体大于元体几倍法以元体边为底从心至第一防为腰置尺次以所求倍数为腰得大底即所求大体边 若设零数如元体设三求作七以三防为初腰七防为次腰如上法【此乘体之法】用法二 有体求作小体得元体之几分如四分之一四分之三等法以元体之边为底命分数之防为腰置尺退至得分数为小腰得小底是所求分体边【此分体之法】用法三 有两体求其比例以小体边为底第一防为腰置尺次以大体边为底就等数得比例之数也不尽则引小体边于二防以下以大边就等数两得数乃上可得比例之全数而省零数

用法四 有几同类之

体求并作一总体 若

有各体之比例则以比

例之数合为总数以小体边为底一

防以上为腰置尺于总数防内得大

底即总体边 若不知其比例先求

之次用前法【此加体之法】

如图甲乙丙三立方体求并作一大

立方体其甲根一乙三又四之三丙

六并得十又四之三以甲边为底本线一防以上为腰置尺向外求十又四之三为腰取底为度即所求总体之根

用法五 大内咸小所存求成一同类之体 先求其比例次以小体边为底比例之小率防以上为腰置尺次以比例两率较数防上为腰得较底即较体之边【此减体之法】

用法六 有同质同类之两体得一体之重知他体之重葢重与重若容与容先求两体之比例次用三率法某容得某重若千求某容得某重若干【同质者金铅银铜等同体者方圆长立等】

用法七 有积数欲开立方之根 置积与一千数求其比例次于平分线上取十分为底本线一防以上为腰置尺次比例之大率以上为腰得大底于平分线上取其分为所设数之立方根如设四万则四万与一千之比例为四十与一如法于四十防内得大底线变为分得三十四强 若所设积小不及千则以一分为底一防或半防或四之一等数为腰置尺设数内求底而定其分若用半防用所设数之一半用四之一亦用设数四之一葢筭法通变或倍或分不变比例之理用法八 有两线求其双中率【线数同理】如三为第一率二十四为第四率求其比例之中两率 法求两率之约数得一与八以小线为底一防以上为腰置尺次八防以上为腰取大底即第二率有第二第四依平分线求第三

第五变体线

变体者如有一球体求别作立方其容与之等分法 置公积百万依筭法开各类之根则立方之根为一百四等面体之根为二○四八等面体之根为一二八半十二等面体之根为五十二十等面体之根为

七六 圆球之径为

一二六 因诸体中

独四等面体之变最

大故本线用二百○四分平分之从心数各类之根至本数加字【开根法见测量全义六卷】

用法一 有异类之体求相加以各体之边为度以为底本线本类之防以上为腰置尺次从立方防内取底别书之各书讫依分体线法合之

用法二 有异类之几体求其容之比例先以各体变而求同容之立方边次于分体线求其比例乃所设体之比例若知一体之容数因三率法求他体之容数

第六分线

亦曰分圏线 分法有二

一法 别作象限圏分令半径与本线等长分弧为九

十度名作识

从一角向各

识取度移入

尺线从尺心

起度各依所取度作识加字 若尺身大加半度之防可作一百八十○度若身小可六十度或九十度止乂法 用正数表取度分数半之求其正倍之本线上从心数之识之【如求三十度即其半十五度之正为二五九倍之得千分之五一九为三十度之从心识之】

用法一 有圏径设若干之弧求其以半径为底六十度为腰置尺次以设度为腰取底即其移试元圏上合其弧 反之有定度之求元圏径以设弧之为底设度为腰置尺次取六十度为腰取底即圏之半径用法二 有全圏求作若干分法以半径为底六十度【其即半径也】为腰置尺命分数为法全圏为实而一得数为腰取底试元圏上合所求分【此分圏之法】 约法本线上先定各分之防如百二十为三之一九十为四之一七十二为五之一六十为六之一五十一又七之三为七之一四十五为八之一四十为九之一三十六为十之一三十二又十一之八为十一之一三十为十二之一各加字

用法三 凡作有法之平形先作圏以半径为底六十度为腰置尺次本形之号为腰取底移圏上得分用法四 有直线角求其度以角为心任作圏两腰间之弧

打 印】 【来源:读书之家-dushuzhijia.com】