之边
又为某弧之即有两数【数
名内边数名外下同】即以其两数求甲
戊线内数若干【甲乙甲戊各有同类之数
见上】用通法【土星解中见之】得六九六
五四甲戊线内数也或甲戊弧之查表求度【数折半为正求弧倍之得全弧】得四十○度四十六分
七戊甲甲乙乙丙三弧并之得一百七十四度○七分查表求其【求之法见上】得一九九七三四即戊丁丙线内数
八以甲戊线两数【内外二数】求戊丁线内数【甲戊戊丁上算有同类之数】推算得一○七一二四【用通法如前】即丁丙内数也
九戊丙内数【上得之】减去戊丁线内数存九二六一○即丁丙线内数也
十因戊甲丙弧不满天半周即圏之心在戊丙其外【几何言之】试置在已作庚巳丁壬过两心之线【黄道心下及本星道心已】定本星道最髙为庚壬为其冲己丁为两心相距之度
十一求己丁【论见土星厯】法以丙丁线之内数乗丁戊线内数
又全数自之【十万为全数】两数相
减【全之方及丙丁丁戊两线内矩形】其余为
方积开方得八九○二即己
丁线也两心之矩度也
十二戊丙线内数平分之于癸作癸巳辛线分戊庚丙弧为两平分【凡圏中一线过心亦名平分圏内他线者必亦平分其弧几何言之】又成癸巳丁句股形【因过心而平分戊丙线癸角为直角】
十三癸巳丁直角形有丁癸边【以戊丁数减去戊丙之半数或戊丁丙两线之半较】为一三五七又有己丁边【前推得之】八九○二求癸巳丁角依法算之【法见测量首卷】得五十四度十二分乃癸巳丁角或庚巳辛角之度或庚辛弧之度数也
十四先得戊甲丙弧以全天周减之其余折半为九十二度五十六分半即戊庚辛弧也以戊庚辛弧减庚辛弧余三十八度四十四分半即庚戊弧也庚戊戊甲【戊甲弧上推得之】两弧并之得七十九度三十分半甲庚也
十五第一测木星在甲则距最髙为甲庚弧或七十九度有半加甲乙弧【一二两测相距平行】得一百七十九度二十五分半庚甲乙弧也第二测木星距最髙也又【口力】乙丙【二三则相距平行】得二百一十二度五十一分半即第三测【距最髙之数也】
十六置所得两心相距之数及各测木星以平行距最高度数依法求各测之均数【图及法见土星中今畧説】图号如上作己甲丁甲等线成己甲丁形依法求甲角又求乙角及丙角皆测三均数也甲角为四度五十六分半第一测均数也乙角为○度三分半【用巳乙丁形算之】前二测距最高度数不过天半周则在缩边为同类两均数之较为两经较之均数算得四度五十三分【前两测中积行平行之差】视然先测
之得四度四十八分算不合
天为五分 又丙角为二度
五十九分【用己丁丙形算之】第三测
均数也此第三测距最髙过
天半周【一百八十度以上】在盈边则
于第二测为异类故第二三均数相加得三度三分而于所测之均数为等而不差【不差葢两均数为异类相平又二测距最低小数】
十七因测及算不合多禄某用均圏再算【均圏用故见土星厯】图如土星等庚甲壬不同心圏也其心为己丁为地心【于黄道心等】
己丁平分于子子为均圏之
心星在午均圏上先算星在
甲则甲午两处之差为甲丁
午角依法求之【土星中见】得三分
因距最髙数在缩边宜先得
均数减得午丁均角为四度
五十三分 第二测亦再算得乙丁午角一分亦减之余二分半两均数减之得四度五十分半又不合所测之数差二分半故均圏不足
十八多禄某见均圏不能全合木星之行则试而再试移最髙顺天二度十五分则两心之差又长为九一七定数如此用上图再算得第一测木星以视行距最
高为七十二度十一分【庚丁午角也】均数为五度○四分【丁午巳角也】第二测木星距最髙为一百七十七度十分均数为十六分两均数【一二测两均数】较为四度四十八分木星两经度相距为一○四度四十三分 第三测木星距髙冲为三十三度二十三分均数为二度四十七分第二三测均数相加并得三度三分又两经度相减得三十六度二十九分各数合天故多禄某以为法
十九第一测测木星在大火宫二十三度十一分又因上算距最高为七十二度十一分即以大火宫度内减之得鹑尾宫十一度分为木星道最高处若加六宫得其冲为娵訾宫同度
二十置两心差及均圏之理因三角形之算可细算木星逓加减表或本行之加减表夫表如他星等表非平分或八段等葢非勾股法【见日躔考】
多禄某因无已前所记木星之测不知本星道最髙世世那移而顺天行故依上法定之后士再测觉之今再译其测
二十一多禄某得丁甲乙
均角甲为嵗轮心作亥丑
圏凡星在亥依本法为太
阳之冲然未到极近处丑
差亥丑弧乃均角之弧第谷曰星真在丑极近者为太阳真冲葢太阳为星之心故用直行非平行上古测木星法【谷白泥亲测所记 第二】
第一测为总积六千二百三十三年正徳庚辰十五年【西法】四月三十日【本方】子初测木星得距娄宿距星为二百度二十八分或测木星在大火宫十七度四十八分【当时娄宿距星距春分为二十七度二十分】太阳平行躔其冲即大梁同度
第二测为总积六千二百三十六年嘉靖六年癸未【西法】十一月二十九日寅初测木星得距娄宿距星为四十八度三十四分或在实沈十五度五十四分太阳平行躔其冲即析木宫同度
第三测为总积六千二百四十二年嘉靖八年己丑【西法】二月初一日戌初测木星距娄宿距星为一百一十三度四十四分或鹑火二十一度四分太阳在其冲躔娵訾宫同度
前二测中积为一千四百○二日又六十四刻其视行度为二百○八度○六分其平行为一百九十九度四十分两行之差为八度二十六分此为加减数或均数也后二测中积为七百九十六日六十刻十一分其视行为六十五度十分平行为六十六度十分其较为一度分均数也
前用三测之图求两心差得万分之一一九三又求木星道最高距娄宿得一百八十度十三分或寿星二十七度三十三分【第一测距最髙为二十八度十五分第二测距二百二十七度五十五分第三测距二百九十四度○五分】
置上两星测及各测木星距最髙若干推算均数第一测得二度五十五分第二测得七度二十五分前二均数为异类【一测木星距最髙不过一百八十度二测过故也】相加得前二测中积均数为十度二十分比所测甚多第三测均数为九度三十三分二三测为同类【皆木星距最髙各过一百八十度故】相减其较为二度○八分乃后两测中积均数与所测更多若用均圏而算其均数亦不能对天则如谷白泥所云宜移木星道之最髙顺天一十六度四十七分又两心差减之为万分之九一七分用本图为六八九均圏为二二九
图乃谷白泥法所用小均圏【见土星解】及不同心圏庚为木星道之最高甲第一测庚巳甲角【本道心上角】为四十五度二分则甲巳丁形有甲巳【全数】己丁六八九两边及已钝角一百三十四度五十八分求甲丁【均轮心距地】得万分之
一○四九六分又求巳甲丁
角得二度三十九分又丑未弧
或己丁未角与庚甲弧为等
加巳甲丁角并得丁甲未角
为四十七度三十四分
甲未丁形有甲角甲未边【小轮】
【半径】甲丁边先推之求甲丁未角得○度五七分因庚巳甲为鋭角均数并减之得四十一度二十六分即未丁庚角也木星本身视距庚最髙之数也
第二测己乙丁形有丁巳乙角为六十四度四十二分有己丁边求丁乙得万分之九七二五求巳乙丁角得三度四十分又未乙丁形有未乙乙丁两边及丁乙未角【庚己乙大角之余加巳乙丁角并得丁乙未角得六十八度二十二分】求未丁乙角得一度十分以庚巳乙为一百一十五度十八分减巳乙丁角【二度四十分】又减未丁乙角【因庚丁乙为钝宜减】存一百一十度二十八分木星身第二测未到最髙之度数也一二测距最高数并之得一百五十一度五十四分乃相测相近之度其余【以满天半周】为二百○八度六分与所测度分等又两测之两均数相加得八度二十六分亦合天第三测亦与未丁庚角推算得四十五度十七分全均数为三度五十一分后二测相距度为六十五度十一分及两均数较同类相减余一度五十九分亦合天谷白泥定木星天之最髙及两心差均圏度如第三测木星在鹑火宫二十一度四分加第三测距最髙【四十五度十七分】得木星道最髙在寿星宫六度二十一分谷白泥法如此因图凡有木星平行得其均数而又常常合天时多及门从之者今世第谷及其门人细细再测依本图定数如左
测定数图
因三测先算两心差乃各测距最髙
【次算】
【次算均数各合天其根必准】
【古今中积一千三百九十三】
【年有竒以中积为法行度】
【为实除之得最髙行之率】
木星新图【测 第三】
上古二法以木星冲太阳之平行度分为根而求本星道最高又本行均数等然今世第谷细细再测云宜用木星冲太阳正所躔之度又以之再试得诸圏半径之数比古所定略异木星新测共八条如左是为新法之本
一测为万厯癸未年【本方在西二十八平刻】九月初六日辰正十分【西法】太阳实躔鹑尾宫二十三度三十三分此时测木星在娵訾同度【度因少不害经度之测】
二测为万厯甲申年十月十三日戌初一刻五分太阳躔大火宫二十二度木星正对太阳在大梁同度三测为万厯辛夘年四月二十三日辰刻太阳躔大梁十三度十分木星正冲太阳即大火宫同度
四测为乙未年九月十二日酉正初十分太阳躔鹑尾二十八度五十六分木星在日之冲即娵訾宫同度五测丙申年十月十八日子正太阳躔大火宫五度四十分木星冲日在大梁宫同度
六测为丁未年九月十七日子初十分太阳躔寿星宫四度十分木星为太阳之冲即降娄宫同度
七测为辛亥年正月初一丑正四十分太阳躔星纪宫十九度三十六分木星对日即鹑首同度
八测为癸丑年三月初一日已正太阳躔娵訾宫二十一度四十五分木星冲日即在鹑尾宫同度
第谷及其门人用本图及用右八测而试今畧亦课之丁为地心庚甲壬木星道甲丁半径为十万甲为第一小轮之心当不同心圏甲乙其半径一十万分之七一五五乙丙均圏半径为二三八五以本法见土星厯中
置木星距庚最髙若干【平行表上
取之】 戊乙弧为与庚甲同度
己丙均圏上取其倍乃丙己
弧为庚甲弧之倍作线成丙
甲乙形夫形有乙角乙丙乙甲两圏各半径求丙甲边又求甲角次戊甲乙乙甲丙两角并之以半周减之得丙甲丁角即丙甲丁形有甲丁全数有甲角甲丙边可推丁角乃本星本圏均角也又推丙丁边乃星距地若干【凡求第一均数诸法非为星之体在丙即为嵗行圏之心葢星在年行之初恒在丙丁线中或上或下人目在丁常见丁丙线如一】
依上八测第谷门人于总积六千三百十三年为万厯庚子得木星最高处在辰宫七度三十二分再筭多禄某古所测总积四千八百四十九年为永和丙子得最高在己宫十四度○分两测中积为一千四百六十四年两处之差为二十三度三十二分乃最髙所行经度依法求一年之行以所行度数为实年数为法而一得五十七秒五十二微又从万歴庚子至本厯元中积为二十八年以所测处加二十八年之行得如表
木星年嵗圏大小及其次加减【第五】
年嵗圏者【古二法名小轮或次小轮】为木星防太阳两次中积所行之轮也一年为二会之中积日率然非太阳之年嵗而为三百九十余日依此圏之行可觧木星之进退迟疾多类之行其全觧见本厯指一卷今求其大小
多禄某用本图测本星太阳冲之外
总积四千八百五十二年永和四年己卯太阳平行躔鹑首十六度十一分【本方】为卯初【月日不记有日行为是】用浑仪移得降娄二度在午圏上木星当时比月及毕宿大星测得视行在实沈十五度四十一分下图为丁辛线图号如上
上木星冲太阳三测第三以前距此测为六百四十一日【时刻不等其差甚微】依表求中积各行得木星平行为五十三度十七分丙己午角次轮行为二百一十八度三十一分【全周外】
第三测视距最髙冲为三十三度二十三分壬丁内也减第三测均数二度四十七分己丙丁角余三十度三十六分壬己午角加中积行丙己午得八十三度五十三分【壬己午角也】用法求第一均数己午丁角得五度十五分丁午己壬加之得午
【打 印】 【来源:读书之家-dushuzhijia.com】