新法算书 - 第3部分

作者:【暂缺】 【82,219】字 目 录

丁壬乃嵗轮心视距最髙冲之度又求丁午线得九九七七七【己午全为十万】

第三测时最髙冲测定在

娵訾十一度木星今测实

沈某度则距髙冲为九十

四度四十五分较小轮心

距度为五度三十七分【午丁

丑角】第三测时起算界申不

到小轮极近【起数之界】少申未弧【己丙丁均角】为二度四十七分加于中积行得二百二十一度十八分未酉子也【未为极近甲未弧在黄道上则本天外故申平行前未视在后算从下未起虚界用平行若干必宜加申未弧得从未到子今测之弧】减半周【未酉戊】余四十一度十八分戊子弧也

丁午子形有午丁边有午丁子角先推及子午丁钝角【子午戍之余】求午子边乃小轮之半径也多禄某得一九一九四【比巳午半径全数十万】

木星天测置巳午半径十万己丁两心差为九一七○小轮半径为一九一九四

多禄某如此又试其法用上古测木星而算又得其所定之数为准古测为总记四四八五年秦王政十八年壬申太阳平行躔鹑尾九度五十六分木星初晨初见见星体食鬼宿苐四星当时经度为鹑首七度三十三分纬度不拘然因今测为细不译其古

谷白泥再测再算得木星道最髙在寿星宫六度二十分又两心差为万分之六八七均圏半径二二九并为九一六分年圏半径为一九一六此圏年之数如多禄某同

第谷及门人色物利诺再细测得第小轮【当不同心圏】为十万分之七一五五均圏为二三八五年圏半径为百万分之一九二九四八又移进最高比谷白泥所算为四十分及平行亦进四分而依此算上记木星八测而测与筭大差不过五分可取为法

测木星视经度依三角形算年嵗圏半径 【苐六】

用第谷门人所测总计六三○六年万厯二十一年癸巳年【西法】九月二十八日【本方】戌正测木星在星纪一十三度五十六分【先测木星距天垒城第 星为三十三度五十九分又距宋星三十二度三十三分又测地平上髙得九度又测赤道之纬为南二十三度七分因测量九卷中法求木星经度得如上求黄道纬得在南○度二十五分两视差先算】此时依平行本表从冬至起得三十度二十分半又最髙在寿星宫七度三十二分二十秒即木星前均轮之心距最高为一百一十二度四十八分十秒【亦谓引数】求苐一均

图説甲为心丙乙戊木星之道丙为最髙冲从丙取丙乙辛丁各如引数之弧【余六十七度十二分】庚戊其倍作戊甲线

先用戊丁乙形有乙丁丁戊

两边【小轮两半径】及戊丁乙角【引数

丙乙弧之倍】求戊乙边得一一五

九二又求戊乙丁角得十度

五十五分五十秒 次戊甲

乙形有戊乙边【上推】有戊乙甲角【戊乙丁角加与丁乙辛角之余】为七十八度七分四十秒甲乙为全数求戊甲边得九八五四六二【全数为百万】先以表算木星距冬至为三十度二十分减去均数引数未满半周故得星纪宫二十五度十三分二十秒乃均圏心之经度 所测度较为十一度十七分二十秒即次均数也

时太阳视行躔寿星宫十五度十七分以到均圏心少九十九度五十六分五十秒次引数乃木星未完年圏之度数也

此次引数生次均数十一度有余可求年圏半径若干上图戊为心作壬癸圏截甲戊线于癸从癸最逺处止壬取星距日【九十九度有余】壬为木星之体【凡星防太阳在癸后徃庚顺行为疾到酉为太阳冲逆行或用太阳距星之度从癸徃庚酉壬算之或用太阳以到星少若干度即从癸逆行徃壬算之各用】作壬戊壬甲二线成壬戊甲形夫形有壬甲戊角

【次均数即十一度余】有戊甲边【上得即九八五

四六二全数为百万】又有甲戊壬角【癸壬

弧之角余】求壬戊边推之得一九

二九四八【全为百万】乃嵗圏之半

径也

若设有各圏半径之数及平行年行数依上图及法可算木星之经度

木星新测一用图算式

崇祯六年癸酉嵗十月十七日丁丑夜望监局同测木星见在井宿苐一星及钺星两星之中钺星井宿作一线木星向北约二十分而畧近于井则三分线之一三分线之二距钺【井宿第一星表上经度为鹑首宫○度六分加厯元后六年之行五分得○度十一分钺星经度为实沈宫二十八度十五分加五分得二十八度二十○分两经度之较为一度五十一分三分之得三十七分减于井宿经度得实沈宫二十九度三十四分】

【乃木星之处也】

依上得木星在实沈廿九度三十四分纬南三十六分

本日测夜望推算用子正时为便日干丁丑距年根乙巳

为三百三十二日以本表求平

行得距冬行为五宫十八度十

四分二十四秒自行为八宫九

度十一分四十一秒

如图新法用各圏半径即甲乙

七一五五【全数十万】丙一二三八五

丙庚一九二九四

从戊最髙逆行取自行宫度数至乙【约轮心】从己极近逆行亦取自行数至丙丙心作嵗圏作线如法所用三角形诸法见测量全义首卷

一甲乙丙形有甲乙乙丙两腰【先定两圏半径】有丙乙甲角【己丙大弧

为自行度数丙己小弧为其余此弧为丙乙甲角之度分也】为一

百三十八度二十三分二十八秒求

丙甲乙角法两腰相并得总相减得较角之余数以满半周半之其切线以较数乗之以总除之得数查切线求度分以角余数之半减之得丙甲乙角次丙乙边数乗丙乙甲角正以甲角正除之得丙甲边

二甲丙丁形有甲丙【前推】有甲丁全

数【十万】及有丙甲丁角【以自行数戊乙弧减

半周又于存者加乙甲丙角得丁甲丙角】求甲丁丙角 法甲丙丁角正

余二数各乗甲丙边之数

以全除之余所得以全数减

之得数自之又正所得自之

二方数并之开方得丙丁边又

正所生全数为实所得方根

为法除之查切线表得度乃甲丁丙角也

二丙庚丁形有丙丁边【前推】丙庚边【嵗圏半径】一九二九四又有丁丙庚角【置太阳本时距度得十宫二十六分三十八秒又以木星实行减之得木星距太阳其余以半周为】庚丙丁角求庚丁丙角法两腰相加得总相减得较 角数之余【以满半周】半之以其切线乗较以总除之得数查切线得度以余之半减之得丙丁庚角之度于实行

算法列后

存数乃丙丁庚角也嵗圏均数也加于实行得视行则木星在五宫二十九度三十二分十六秒比所测差三分极防差也

此测用表法中再以表算所得比三角形算差不到一分大概歩星测算所差二三分内法亦合天

木星新测二用表算式

崇祯癸酉嵗十一月十六日甲辰夜望见木星食司怪第二星或曰两星之体实未合一细看果然及用逺镜分二星相距分数忽天有云不见其时为戌末亥初算置十七日乙己子正

大统厯载木星十六日夕退即冲对太阳又载十三日木星在参宿四度十九日在参三度【逆行也】若然则木星十六日当在参宿三度半

新法以赤道算司怪第二星赤道经度为八十六度八分减去参宿距星赤道上经度七十八度二十四分余八度四十四分乃十一月十七日子正木星躔赤道宿次也较大统盈五度十五分

司怪第二星黄道上在实沈宫二十五度五十分纬南○度一十三分

测星时算太阳躔度

癸酉年根日为乙巳本年十一月十七日亦为乙巳相距计十二个月满六纪法为三百六十日乃距年根之日数也

逺镜见木星图小星乃本星

所随之星目力不能见

算木星与司怪苐二

星两星之差六分

系木星实未食恒星

然木星照光并恒

星光相交如一体

又依逺镜所窥两星

实未合木星见东

恒星见西皆在六

分之内

中分【三五八】

髙庳○分 此法差不及半分

较分三十三秒

系木星经度未及太阳之冲为二十六分因逆行为越过二十六分变时【太阳一日之行为六十一分木星一日之行七分因逆行并之得六十八分以三率求二十六分之行得九时十分】以乙己子正减之得甲辰日未正三刻五分乃木星实对冲太阳

新法算书巻三十八

钦定四库全书

新法算书卷三十九 明 徐光启等 撰五纬厯指卷四【火星】

按古天图火星属第四重天在太阳之上土木之下今因新测及新图又博考前贤遗论凡会合伏太阳则在其上凡夕退冲太阳则在其下而于地更近也

火星视行絜他星之行更竒或行逾二百余日不及天周一宫或越四旬日而行过一宫不达其道者曰无法之行也古比利尼阿【西大士】曰火星之行不能测度言甚难也勒爵【亦西精厯之士】测火星之曲路欲求作图永为世法厯年乆而无成功自怼虚费功力闷而几毙后世之士益敏学如第谷二十年中心恒不倦每夜密密测算谋作图法未竟而毙其门人格白尔续之着为火星行图一部分五卷七十二章而定其经纬髙低之行然但穷其理未有成表测法虽明未解其用阙然未备后马日诺及色物利诺二人相继作表而用法始全兹本指以古今讲测诸法择其最要者译之

如土木二星等法测火星本天两心差及其最髙必用火星冲太阳测盖以是时无岁行之差而但有本天之盈缩差也凡十有五章如左

测火星最高及两心差先法【第一章】

用古三测与测土木二星法同

第一测总积四千八百四十三年为汉顺帝永建五年庚午十二月十一日丑初【西厯本地】测火星经度为实沈宫二十一度○分于时太阳平行躔其对冲宫度为析木宫同度【测星算曰二者并重彼此测算相比可得其相对之时不谬】

第二测总积四千八百四十八年为汉顺帝阳嘉四年乙亥二月二十一日亥初【西厯】本地测火星经度在鹑火宫二十八度二十分于时太阳平行躔其冲枵宫度分同【以算得之】

第三测总积四千八百五十二年为汉顺帝永和四年己卯五月二十七日亥正【西厯】本地测火星经度在析木宫二度三十四分于时太阳平行躔其冲实沈宫同度分

前二测中积为一千五百二十九日二十二时【小时】此时依前所定平行数得火星行八十一度四十四分全周外又两所测火星之视经度差【从实沈宫某度至鹑火某度】为六十七度五十分平行视行相减得十三度五十四分为均数也平行大视行小【用不同心圏】可知二测在最髙之左右

后二测中积一千五百五十六日四刻此时依平行率火星平行全周外为九十五度二十八分视行【两测两经度之较】九十三度四十四分两行相减得较为一度四十四分乃均数也均数小因知两测并在最髙同方或左或右

以三测中积两行数及其较用不同心圏作图如土木二星等此三测置火星在本道下如本圜平面内测之不求其纬盖火星纬南北比土木二星更多又凡冲太阳其纬益大即测其经度者亦不得指为黄道度又不得为本道度然测法或用黄道度或本道度因其差有限不碍于算也故用如在一平面上

甲乙丙戊为火星本行之圏于黄道不同而于相交处任取甲为第一测火星所在从天顺数右行本圏上取前二测中积平行之度分即八十一度有竒至乙乙为第二测火星所在之处又顺天再数得后二测中积平行之度即九十五度有竒至丙丙为第三测火星所布之处也此本圏之心非地心乃火星平行圏之心又因上论甲乙二测在最髙左右则地心在本圏心下任取一防如丁为黄道之心【不知两心差故任取】从甲乙丙三测到丁作甲丁乙丁丙丁三线又丙丁引长到圏周如戊作戊申戊乙甲乙三线六线成各三角形如左

一乙丁戊形有戊角四十七度四十四分【乙丙弧之半数】有乙丁

戊角八十六度十六分【丁为地心

见乙丙两测视行相距为九十三度四十四分乃乙丁丙

角也乙丁戊为以满两直角之余】乙角自为

四十六度无分乙丁戊形中

有三角求三边之比例【用各角之】

【正得其比例或置丁戊邉为全数求乙戊边】多禄某先定丁戊为全数求乙戊得一三八七二○

二甲丁戊形有甲戊丁角八十八度三十六分【甲乙丙弧之半数即一三测中积平行之半数】又有甲丁戊角十八度二十六分【一三测中积视行为甲丁丙角取其余】自有戊甲丁角甲戊丁形有三角再置戊丁为全数求甲戊边得三三○六九

三甲乙戊形有甲戊乙角四十度五十二分【一二测中积平行之半数或甲乙之半弧】又先推算甲戊戊乙两边求甲乙得一一五七三六【全数十万】

四算得甲乙甲戊戊乙三线为同类【丁戊常为全数十万】今甲乙线因为甲乙弧之可得甲戊及戊丁

打 印】 【来源:读书之家-dushuzhijia.com】