生在日在地在炭固无颤动之理是以景必系于暗体如轮必系于枢轴光上景即下光东景即西必相对也无相就也故太阳照地其光绕地一周则景在其相冲之界亦绕天一周葢日光从其本天直射至于地面而景在地之彼面亦直射至于月天苐日体常依黄道中线则地景亦常依黄道中线而月行常出入黄道中线之内外是以月体与地景不得恒相遇合大都不合时多合时少故日月不食时多食时少以此景之形势第三
求食分之几何必先求景之几何景几何者以日月地之大得景之形势以日月地相距之逺近分数得景之变易大小分数也此所论则景之形势后考其变易之势得景分以定食分焉凡二章
一曰二体相等其影平行而无穷明小暗大其景渐展而无穷 论相等者证以平行之切线也如图甲乙两球
等丙己丁戊为两球之切线与
两球之径丙丁己戊遇于切防
皆为直角则互为平行线又球
等即径之长短亦等以遇丙己
及丁戊无不为平行线也【几何一卷三十三题】若两球之周遭切线无数皆同此论则引之至庚辛以迨无穷终平行终不能相遇而其形为长圆柱之无穷体
论明球小于暗球则推以三角形相似之比例也如图乙丙为小明球丁戊为大暗球两球之切线丁乙及戊丙引长之过小球必相遇于甲成甲丁戊三角形又从丁戊底作己庚平行线在大球之外成庚甲己三角形
与甲丁戊相似则甲己庚角
与甲丁戊角相等其各边各
角皆相似而甲丁与丁戊若
甲己与己庚也反而更之己庚与丁戊若甲己与甲丁也甲己长与甲丁则己庚亦长与丁戊愈逺愈长可见大球之影渐逺渐拓矣【几何六卷四题】更论丁戊线之内外角则在内者为鋭角在外者为钝角故引切线向内过小球必相遇引之向外愈逺愈拓终不相遇而其形为无限长无限广之角体又因两球所居逺近不同景之张翕随而变易故两球相近即乙丙底线为小其景愈狭而乙甲丙角形愈短两球相逺即底线为大其景愈拓而角形愈长也
今验诸日食有食分同而所厯时刻不同者月景之在地面广狭不同也月与日防月在日与地之间或月近地而日在逺则目之见界过月周至日体其界广日过迟其见食时刻多或月逺地而日反近则目之见界过月周至日体其界狭日过速其见食时刻少也姑以前图明之目在甲乙丙为月体丁戊为日体切线甲丁及甲戊为目所见之界若日在近为丁戊即从丁过戊道近行速其食时寡若在逺为己庚从己过庚道逺行迟其食时多皆太阳有不同心圏而太隂又有小轮所繇生也
二曰日月地三体大小不同 凡暗体出角景者施光之体必大于暗体否者其光不能照暗体之大半而使其景渐小以趋于尽也试观月食时月体近地则入大景逺地则入小景愈逺愈小必至于尽安得不信日体大于地体乎设谓日体与地体或等则景宜亦等或小则宜渐大又当皆为无穷之景遇望时月体必不能出大影之外不应有不食之望矣有不食者是地景之益逺益鋭也月食于地景之中又有全而且久者是月径更小于景而景小于地也地景之逺而益鋭者是日大于地也此以景理推论三体之小大畧可明矣若又以日体之大推月地之景则更有法可考其大小之比例也昔人因太阳照地所生之景及其逺近其视径时时不同又以较于他体得其实体之大説见月离厯指中此独用视径定食时刻分之数其论实体为景与食之原畧举一二如左
几何原本论三角形于一边之两界出两线复作一三角形在其内则内形两腰并之必小于相对两腰而后两线所作角必大于相对角如图甲乙为太阳之径丙为目从逺视之丁亦为目从近视之此所谓内外两三角形也今先以线论因内形之甲丁乙丁两腰小于相
对之甲丙乙丙两腰则所
作丁角比相对之两角亦
近于共用之甲乙底近则见大故丁目视甲乙日径必见大于丙目所视之甲乙径也次以角论因内两线所作丁角大于相对丙角则此内角所对线亦似大于外角所对线而丁目所见之甲乙大于丙目所见之甲乙也此太阳视径不同之縁也
求太阳实体之大第谷设最髙最庳之中处得其距地一千一百五十地半径全数十万其半径一十五分三十秒得正四百五十一以三率算法推其全径得地之全径五又七十五之一十四如三百八十九与七十五也又以其径与其周之比例得太阳体之立方五千八百八十六万三千八百六十九地球之立方四十二万一千八百七十五其终数得一百四十弱为太阳大于地之倍数也此其照月照地生角体鋭景之原也景之作用第四
月与地若各以其景相酧报然如月望则地景隔日光令月不受照有时失满光有时全失光也至月朔则月体隔日光令地不受照有处射满影有处留少光而已説三章
一曰月食于地景 月食在望縁日月相对其理明矣独谓闇虚为地景者或致疑焉今解之月对日受光借非日月之间有不通光之实体为其映蔽则何繇阻日光之直照若天体及空中之火空中之气皆通明透彻不能作障使月失光也即金水二星亦是实体有时居日月之间然其景俱不及地况能过地及月乎则知能掩月者惟有地体一面受光一面射景而月体为借光之物入此景中无能不食半进而半食矣全进而全食矣
二曰日食者月掩之 恒言月在内去人近日在外去人逺故定朔时月体能掩日光是已苐金水二星亦皆时在日内又皆不通光之实体水星虽小金星则大于月也何独月能食日乎曰二星虽有时在日内则去人甚逺逺则视径见小不能掩日百分之一二而日光甚盛所亏百之一二非目力所及且二星比月去日更近所出鋭角之景更短不能及地面也若月体之大虽不及太白而去地甚近去日甚逺一指足蔽泰山又何疑乎由此言之求一实不通光之体全掩日体者惟月为能又自西而东不及三十日而周其行度较于诸天最为疾速故每望定朔皆同经度皆能有食其不食者繇距度不及交耳
三曰因景之径生多变易 月以距度广狭为食分多寡一因去交有逺有近去黄道中线有正有偏一因入地景有浅有深故也今论其全食者而大小迟疾犹多变易曽非一定葢日在自行本天月在小轮相距逺近往往不等日距月近较距逺时更照月体之多分从月体出景更短其景至地更小则日虽全食月体见小厯时亦速也日与地亦然以两体相距之逺近为地景之大小使月食时入于地景在其近末之鋭分则闇虚之体见小食分少厯时速皆因三体之相距逺近以生大小迟疾地景月景皆无一定之径致令随时变易如此若月景地景二径之小大又自不等故日食尽于食既而月则食既以后尚有既内余分葢地景大于月景故两食皆全其亏复迟疾无能不异矣又月食天下皆同日食则否日食则此地速彼地迟此地见多彼地见少此地见偏南彼地见偏北无不异也月食则凡居地面者目所共见其食分大小同亏复迟疾同经厯时刻同唯所居不同子午线者则见食之时刻先后不同耳葢月一入景失去借光更无处可见其光也又槩论天下日食应多于月食为二径折半其近交时加以南北视差易相逮及故论一方则日食应少于月食为月食共见日食因地故【见后卷详之】
月在景之光色第五
月既暗体当全食时一入地景遂应失其借光非复人目可见也葢可见之物悉无原光必借外光以显其象无外光即无从见有此物安从更显物色乎今月居厚影尚有微光可见更发色象或赤色或青黑色或襍色此何从生今畧解之凡三章
一曰月不独食于地影 论通光者有二体一谓物象遇甚彻之体易于通射比于发象元处更加透明则形若开而散焉一谓物象遇次澈之体难于通射比于发象元处少襍昏暗则形若敛而聚焉其遇甚彻者如舟用篙艣半在水中发象上出出于水面所遇空明气之光甚澈之体也则其象散而斜射视之若曲焉其遇次澈者如太阳入地平下其光照地旁本宜直上乃所遇清之气次澈之体也则其象合聚而射于地面凡地平以上皆得其次光为朦胧焉【即昧爽黄昏亦曰晨昏】此两者皆以一物经繇两体其势曲折皆谓之折照【若一物在一体之中以一直线入目谓之直照】夫同是日光也在地面之上能折入于地景之根际则自地面而上何独不能折入于景之中际至月体经行之处乎如图甲为太阳乙为地球借非清气能迎太阳之光而成折照则宜从子出光至丙从丑出光至丁切地面径过而复合于庚为地景鋭角也今不其然因清气周绕地球日光至丙至丁遇其次澈之
体难于透射则曲而内聚止于戊己地面矣而大圜中大气无不受日之照光光在壬癸者遇于气即内敛至于卯辰此为初折从卯辰切地而过若遂以直线引之即复合于辛成卯辰辛襍线三角形为地之满影自此以外全景之中皆得太阳折照之光与朦胧次光相类而实为初景能食望月之满光也欲求满景之长姑先依初折之光引直线复出于气之外【姑先云者不宜遽引直线也葢初折之光至于卯辰既抵地面又复内敛谓之次折则两线之交尚在辛防之内今云然者姑先明初折之理约定乙辛之数如太隂之言交泛言平朔言本轮也其次折之理次二章详言之求辛防以内之定距率矣】而借第谷所测清差与多禄某所定地景角之大得辛辰庚角三十四分【近地平之气差大率如此】得卯庚辰全角二
十五分三十六秒半之为辛庚辰角一十二分四十八秒其相对之外角乙辛辰为四十六分四十八秒【辛庚辰辛辰庚相对之两内角并】次乙辛辰三角形其乙辛辰角既得四十六分四十八秒乙辰辛为切线与垂线所作角必直角此直角与乙辛边如乙辛辰角与乙辰地半径即得乙辛短线长于地半径七十三倍若论地之全景乙庚线尚长三四倍也夫月食于地景必依其景之体势显其食之貌象今全景之中既以地景兼气之景则并有初景有满景月入于中随其所至变易光色无足异矣或曰从古论食月者全属地景今云不止地景而更加之气景此为全景方之地景不亦愈长愈广乎则从上古以来以地径度月体过景之数以地径定日月之视径以地径较日月之两髙以地径求日月之去地逺近悉皆乖舛而当更定新率然乎抑否乎曰不然所论气之景谓太阳之光因于此气能令全景之中分别厚薄变易景中之色象非谓地之径因景而加大也譬如眼镜本无厚之体徒以变易物象显其用耳且气景之于地景亦何能加长加大乎计清出地之髙不能过极髙之山极髙之山测其垂线不能过千四百步大地之径则三万里以髙山之步数化为里数而较地径则五千分之一耳此气之厚何能加于地径而云设此论者有妨于地径测量之法乎
二曰月体当食而成赤色是气景所生 月全食时其光色往往更迭变易其初食既与未生光当此二际则成赤色夫月入地景果必失光宜为纯黒不应复显他色今赤色者得无是其本光乎曰次光之物惟无光之处能显其光一遇大光之体则次者之光泯矣今以地景言之月居其甚厚之际即甚逺于大光果有自体之光于此尤宜显著乃今测之则在浅见盛在深见微可证食时所见非月体自有之光也故应论定月能食于气景如上所説矣然食时亦能变易诸色何以独言赤色试观太阳下照地面受之论其本然皜明无色日地之间或发昬之气即地面所见时转为黄时转为赤皆因所遇之气如玻瓈映目色青见青色緑见緑也今日照地旁照光所过清之气因于斜穿而成厚体月体所显光色尤深成为赤色矣试论其所以
视学家有公论凡象斜射次澈之体以垂线为主曲折通之初入则聚折而向于垂线既出则散折而离于垂线也何谓垂线葢于澈体之面过受形之防作线下垂
则是折照所向所离之线如图圆
体甲戊乙方体甲丁戊皆次澈也
当其面有斜照之光在丙至甲防
而入至乙防而出则甲丁与丁乙皆为垂线照光至甲防而入必聚而折向于甲丁垂线至乙防而出必又散而折离于乙丁或乙壬垂线若言光至乙防出或不照庚而更照己则是返照之光非折照之光也依此申言上章所推地球满影之长如图太阳之光遇于气从壬癸折入作壬卯癸辰线为初折又从卯辰折出作卯
午辰未线为次折以复合于己别
生午己未杂线角形乃因乙己未
角生己未辛及己辛未为外两角
并之得乙己未内角一度二十○分四十八秒今设从满景之角己出切线至地球辰得乙己辰直三角形则因乙己辰角一度二十○分【乙己辰角比乙己未角差数甚微畧得四十八秒故以算景之长不论为数】如前比例得地满景之心长于地半径四十三倍比月最庳之入景处近地一十一地半径也【月最庳入景五十四最髙入景五十八】今图月在景之形势地球为甲乙内圏其四周有气为丙乙圏气外切边之光复合于卯是为全景透气之光自丙至戊因戊以上所照必聚而止于地面无从透达也则光至丙为太阳之外边所照光
至戊乃其近中体所照以丙较戊更斜从庚而来入气处更曲从辛来之光己透气而复出更直故令丙丁线割戊己线于壬为丁己壬角形是为次光又为初景其角形周遭为环体抱满景而居全景之中也丁己壬角形既尽
【打 印】 【来源:读书之家-dushuzhijia.com】