新法算书 - 第3部分

作者:【暂缺】 【82,219】字 目 录

钦定四库全书

新法算书卷三十七明 徐光启等 撰五纬厯指卷二

测土星最高及两心之差先法【第一章】

右多禄某择取土星在日之冲前后三测

第一测总积四千八百四十年为汉顺帝永建二年丁卯西厯三月廿六日酉正本地测得土星经度为夀星一度十三分于时太阳平行躔其冲得降娄一度

十三分

第二测总积四千八百四十六年为汉顺帝阳嘉二年癸酉西厯六月初三日申正本地测得土星经度在析木宫九度四十分太阳平行对冲在实沈宫九度四十分

第三测总积四千八百四十九年为汉顺帝永和元年丙子西厯七月初八午正本地测得土星经度在星纪十四度十四分太阳平行对冲在鹑首十四度十四分

前二测中积为二千二百六十○日又二十二日【二十四时为一日】此时依前所定平行数得土星行七十五度四十三分又两所测土星之视经度差【从寿星一度十三分至析木九度四十分】得六十八度二十七分平行视行相减得七度十六分为均数又平行大视行小【用小轮法】可知星在自轮之上【自轮当不同心圏也星在其上即逆行必减平行为视行而视行为小】后二测中积为一千一百三十○日又二十○时此时土星之平行三十七度五十二分又两测视经度相减【析木宫九度四十分至星纪宫十四度十四分】得三十四度三十四分又平行视行两数相减得三度一十八分为均数平行大视行小星亦在自轮之上依上三测可见平行与视行不一又视行时大时小前二测以减均数得视经后二测以加均数得视经可见

视行时疾时迟

用右测亦用古图则不同心圏及大均圏

如图甲乙丙圏为土星本天【亦名本圏亦名不同心圏】取甲为第一测土星所躔本圏上度【未定最髙左右故任取之】从甲至乙为前两测之中积平行七十五度四十三分乙为第二测土星所躔本圏上度从乙至丙为后两测之中积平行三十七度五十二分丙为第三测时土星所躔本圏度也又

本圏心外任取一防为丁以

当黄道心作甲乙甲丁乙丁

三线又从第三测丙过丁作

丙丁戊线【此先用甲乙两测或用乙丙或用甲

丙皆可】至周上又作甲戊乙戊

二线成多三角形丁为黄

道心则视行之度用黄道上所测之弧或用其辏心之角一也【丁防为黄道心其周上各分之弧与其辏心之各角各幷之皆得三百六十度各弧与各角相当弧角两名亦互用】

一乙戊丁形有乙戊丁角【戊角在界乘乙丙弧则为乙丙弧度之半】为一十八

度五十六分又有乙丁戊角

【乙丁丙丁为后两测黄道上土星之度则乙丁丙为两测

中积视行度之角得三十四度三十四分乙丁戊为其满

半周之余角】为一百四十五度二

十六分乙角必为一十五度

二十八分【三角形之三角当两直角或当一百】

【八十度】有三角求三边【侧量全义首卷九题日边与边若各边对角之正则以各角之度查正表得数为各对边之数】乙丁边得三二四四七【戊角之正】戊丁边得二六九四八【乙角之正】戊乙边得五六七三六【丁角之正言三测之弧言在界所乗之弧皆本圏上之平行弧言辏丁心各角相当之弧皆黄道上之视行弧故弧同数异也】

二甲戊丁形有甲戊丁角【甲戊丁角在界乘甲乙丙弧用半数甲乙七十五度四十三分乙丙三十七度五十二分并之得一百一十三度三十五分半之得五十六度四十七分半】为五十六度四十七分半有甲丁戊角【甲丁乙乙丁丙两角并为一百○三度○一分以满一百八十度为甲丁戊角】为七十六度五十九分第三角即戊申丁必为四十六度一十三分半有三角求三边【法如前】得甲丁边为八三六六八【戊角之正】甲戊边为九七四三○【丁角之正】戊丁边为七二二○六【甲角之正】

三乙戊丁甲戊丁两形同用戊丁边是戊丁边有二数以

此两戊丁依通率法通为同

类之数【两形数相通元法置一虚数依各边之比

例求各两虚数之几何也】用三率法【法日乙戊

丁形之戊丁为先数二六九四八为一率甲戊丁形之戊

丁为次数七二二○六为二率乙戊丁形之乙戊为先数

五六七三六为三率如法得甲戊丁形之乙戊为次数】

求乙戊边次数【次数与戊丁边次数同类】得一五二○二一即与甲戊丁形数同类

四甲乙戊形有甲戊乙角【戊角在界乘甲乙弧弧为平行七十五度四十三分用其半】为三十七度五十一分半有甲戊戊乙两边【甲戊边第二算所得也乙戊边则第一算所得而用通法为与丁戊或甲戊同类】求甲乙边【法从甲角作甲午垂线分元形为两句股形用甲午戊形求甲午为全与甲戊邉若戊角之正与甲午得五九七八三又求午戊为全与甲戊边若戊角之余与午戊得七六九三三又以午戊减戊乙得七五○八八次甲】

【午乙形有甲午股午乙句求乙甲两数各自乘并而开方得甲乙边】得九五九八○

五甲乙线有两数一为甲乙弧之【甲乙弧先两测之平行七十五度四十三

分】一二二七四三一为前推

甲乙戊之边九五九八○以

此两甲乙线通之求甲戊

与甲乙同类【法甲乙边为外数为一率

打 印】 【来源:读书之家-dushuzhijia.com】

首页 上一页 1 2345下一页末页共24页/48000条记录