下面我将尝试重新把概率理论作为一种(经过修改的)频率理论建立起来。因此我宣布我信仰客观解释;主要是因为我相信只有客观理论才能解释概率计算在经验科学中的应用。大家承认,主观理论能够给如何判定概率陈述的问题提供一个前后一致的解决办法;并且一般地说,它面临的逻辑困难比客观理论少。但是它的解决办法是:概率陈述是非常经验的;它们是重言的。当我们想起物理学利用概率论时,这种解决办法就证明是完全不能接受的了。(我摈弃主观理论的这种变种:认为客观频率理论应从主观假定中推导出来——也许利用bernoulli定理作为“桥梁”;由于逻辑上的理由我认为这种纲领是不能实现的。)
49.机遇理论的基本问题
概率理论的最重要应用是用于我们可称之为“似相遇的”(chance-like)或“随机的”事件,或偶发事件。它们的特征是一种特殊的不可计算性,这使得人们经过许多次不成功的尝试后倾向于相信,一切已知的理性预测方法用于这些事件必定失败。可以说,我们感觉到除了先知以外没有一个科学家能够预测它们。然而正是这种不可计算性使我们得出这样的结论:概率的计算能够应用于这些事件。
如果我们接受主观理论,那么从不可计算性达到可计算性(即达到某种计算的可应用性)这个有点悖论性质的结论,确实不再具有悖论性质了。但是这种避免悖论的方法是极不令人满意的。因为它包含着这样的观点:概率计算与经验科学的所有其他方法相反,不是一种计算预测的方法。按照主观理论,它不过是一种使我们已知的东西或者更确切地说,使我们未知的东西实行逻辑变换的方法;因为正是在我们缺乏知识时我们实行这些变换。这种观念确实使悖论消解,但它不能解释被解释为频率陈述的无知陈述如何能够在经验上受到检验和得到验证。然而这正好是我们的问题。我们如何能够解释这个事实:我们可从不可计算性——即从无知——中作出能够解释为经验频率陈述的结论,并且尔后我们发现它们在实践中得到光辉的验证呢?
甚至频率理论直到现在还不能对这个问题——我将称之为机遇理论的基本问题——提供一个令人满意的解答。在第67节将表明→JingDianBook.com←这个问题与“收敛公理”有联系,后者是目前形式的这个理论的一个组成部分。但是在这个公理消除后,在频率理论框架内找到一个令人满意的解决办法是可能的。通过分析这样一些假定就会找到这种解答,这些假定使我们能够从单个偶发事件不规则序列推论到它们频率的规则性或稳定性。
50.vonmises的频率理论
为概率计算的所有主要定理提供基础的频率理论首先由richardvonmises提出的。他的基本思想如下。
概率计算是似机遇的或随机的事件或偶发事件序列,即例如连续掷骰子那种重复性事件序列的理论。借助两个公理条件把这些序列定义为“似机遇的”或“随机的”:收敛公理(或极限公理),和随机公理。如果一个事件序列满足这两个条件,vonmises就称它为一个“集合”(collective)。
大体上说,一个集会就是一个事件或偶发事件的序列,它在原则上可以无限地延续下去;例如掷骰子序列。假设骰子是破坏不了的。在这些事件中,每一个都有一定的特性和性质;例如可以掷个5,因而具有性质5。如果我们选取直到序列某一元素以前已出现的所有具有性质5的掷骰子次数,除以直到那个元素以前掷骰子的总数(即序列中它的基数),那么我们就获得直到那个元素以前的5的相对频率。如果我们确定了直到这个序列每个元素以前5的相对频率,我们就用这种方法获得一个新的序列——5的相对频率序列。这种频率序列不同于它与之相应的原先的事件序列,后者可称为“事件序列”或“性质序列”。
我选取我们称之为“二择一”(alternative)作为一个集合的简单例子。我们用这个词指假定只有两种性质的事件序列——例如掷一个钱币猜正反面的序列。一种性质(正面)用“1”表示,另一种性质(反面)用“0”来表示。于是事件序列(或性质序列)可用下式表示:
(a)01100011101010……
与这种“二择一”相应——或更精确地说,与这种二择一的性质“1”相关——的是下列“相对频率序列”,或“频率序列”:
……
收敛公理(或“极限公理”)假定,随着事件序列越来越长。频率序列将趋向一个确定的极限值。vonmises使用这个公理是因为我们必须弄清楚我们能够借以工作的某个固定的频率值(即使实际的频率值有一些波动)。在任何集合中至少有两种性质;如果我们得到与某个集合所有性质相应的频率极限值,那么我们就得到集合的“分布”。
随机公理或有时称之为“排除赌博系统原理”(theprincipleoftheexcludedgamblingsystem),是打算用来为序列的似机遇性质提供数学表现。显然,如果掷硬币的序列有规律性,比方说在每三次掷正面后就出现反面相当有规律,那么一个赌徒就会用某种赌博系统来改善他的运气。随机公理就一切集合假定,不存在能够成功地应用于这种集合的赌博系统。它假定,不管我们可以选取何种赌博系统以选择认为有利的掷猜(tosses),我们将发现,如果赌博有足够长的时间继续下去,认为有利的掷猜序列中的相对频率接近的极限值与所有掷猜序列的极限值是一样的。因此存在着一种赌徒能借以改善他运气的赌博系统的序列不是vonmises意义上的集合。
对于vonmises来说,概率是“集合中相对频率极限度”的另一个术语。所以概率概念仅应用于事件序列;从keynes等人的观点看来,这样的限定大概是完全不能接受的。对于批评他的解释太窄的人,vonmises的回答是强调科学的使用概率(例如在物理学中)与一般的使用概率之间的不同。他指出要求定义恰当的科学术语非要在一切方面去适应不确切的、前科学的用法是个错误。
按照vonmises的意见,概率计算的任务只不过在于此:从具有某些给定“初始分布”(initialdistributions)的某些给定“初始集合”(initialcollectives)推论出具有“导出分布”(deriveddistributions)的“导出集合”(derivedcollectives);简言之,根据给定的概率计算出那些没有给定的概率。
vonmises把他的理论的独特特点概括为四点:集合概念先于概率概念;定义概率概念为相对频率的极限值;提出随机公理;以及规定概率计算的任务。
51.新的概率理论计划
vonmises提出的两条公理或公设以定义集合概念曾遇到强烈的批评——我认为这个批评不是没有道理的。特别是反对把收政公理和随机公理结合起来,理由是不允许把极限或收敛的数学概念应用于按照定义(即由于随机公理)必定不服从任何数学规则或定律的序列。因为数学极限值不过是决定序列的数学规则或定律的特有性质。数学极限值不过是这种数学规则或定律的一种性质,如果任意选定一个接近于零的分数,序列中都有一个元素,使得在它之后的所有元素与某个一定的值的差小于这个分数——于是这个值称为它们的极限值。
为了对付这些反对意见,有人建议不要把收敛公理和随机公理结合起来,仅假定收敛,即被限值的存在。至于随机公理,建议或者全然放弃它(kamke),或者用较弱的要求代替它(reichenbach)。这些意见的前提是认为引起麻烦的是随机公理。
与这些观点相对照,我倾向于责怪收敛公理不亚于责怪随机公理。因此我认为有两项任务要做:改进随机公理——主要是一个数学问题;以及完全消除收敛公理——认识论家特别关心的一个问题(参阅第66节)。
下面我首先讨论数学问题,然后讨论认识论问题。
这两项任务中的第一项,即数学理论的重建,其主要目的是从一个修改了的随机公理推导出bernoulli定理——第一个“大数定律”;修改为实现这个目的所需,不要求更多。更确切地说,我的目的是推导出二项式公式(binomialformula,有时称为“newton公式”),我称为“第三式”。因为能用通常的方法从这个公式中获得bernoulli定理和概率论的其他极限定理。
我的计划是首先制定一个有穷类(finiteclass)的频率理论,并且尽量在这个框架内发展这个理论——即直至推导出(“第一”)二项式。这个有穷类频率理论原来是类理论(thetheoryofclasses)一个十分基本的部分。它之得到发展只是为了获得讨论随机公理的基础。
接着我将通过引入收敛公理的老方法进而到无穷序列,即能够无限延续的事件序列,因为我们需要它来讨论随机公理。在推导出和考察bernoulli定理之后,我将考虑如何能消除收敛公理,以及哪一类公理系统我们应该作为结果保留下来。
在数学推导的过程中,我将使用三个不同的频率符号:f”示有穷类的相对频率;f’示无穷频率-序列相对频率的极限值;最后f示客观额率,即在“不规则”或“随机”或“似机遇”序列中的相对频率。
52.有穷类内的相对频率
让我们考虑一类α的有穷数目的偶发事件,例如昨天用这粒特定的骰子掷猜这类偶发事件。设这类α为非空类(non-empty),可以说它起着参考系的作用,将称之为(有穷的)参考类(reference-class)。属于α的元素数目,即它的基数,用“n(α)”表示,读作“α数”。另一类β,可以是有穷的,也可以不是有穷的。我们称β为性质类(property-class)。例如它可以是所有掷5的类,或(如我们将要说的)所有具有性质5的掷猜类。
属于α又属于β的那些元素类,例如昨天用这粒特定的骰子掷并有性质5的掷类被称为α和β的乘积类(product-class),用“α·β”表示,读作“α和β”。由于α·β是α的子类,它至多能含有有穷的元素数(它可以是空类)。α·β中的元素数用“n(α·β)”表示。
当我们用n表示(有穷)的元素数时,用f”示相对频率。例如,“在有穷参考类α内性质β的相对频率”写作“αf”(β)”,可读作“β的α频率”。我们现在能定义
(定义1)αf”(β)=n(α·β)/n(α)
根据我们的例子这意味着:“昨天用这骰子掷时出现5的相对频率,按照定义等于昨天用这骰子掷5的数被昨天用这骰子掷的总数来除所得的商。”
从这个颇为平凡的定义中,能够十分容易地推导出有穷类中频率计算的定理(更具体地说,一般乘法定理;加法定理;以及除法定理,即bayes规则)。在这种频率计算的定理中,以及在一般的概率计算中,其特征是基数(n数)从不在其中出现,出现的是相对频率,即比值,或f数。n数仅发生在一些基本定理的证明中,这些基本定理是直接从这个定义中演绎出来的;但n数并不发生在定理自身中。
在这里用一个十分简单的例子来说明对此应作如何理解。让我们用“”(读作“β的补数”或简单地读作:“非β”)来表示不属于β的一切元素类。于是我们可写出:
αf”(β)+αf”()=1
虽然这个定理仅包含f数,它的证明要利用n数。因为这定理认定义(1)中得出,借助于来自断言n(α·β)十n(α·β)=n(α)的类的计算的一个简单定理。
53.选择、独立、无影响、无关
在能够用有穷类相对频率作的运算中,选择(selection)的运算对以下所述有特殊重要性。
设给定一个有穷参考类α,例如一只匣子中的钮扣类,以及两个性质类,β(比方说,红钮扣)和γ(比方说,大钮扣)。我们现在可把乘积类α·β看作一个新的参考类,并提出α·βf”(γ)值的问题,即在新的参考类内γ的频率的问题。新的参考类α·β可称为“从α中选择β元素的结果”或“按照性质β从α中选择”;因为我们可以想到它是通过从α中选择那些具有性质β(红)的一切元素(钮扣)。
γ发生在新的参考类α·β中的频率与发生在原先的参考类α中的频率相同,这恰恰是可能的;即
α·βf”(γ)=αf”(γ)是正确的。在这种情况下,我们(遵循hausdorff)说性质β和γ“在参考类a内是相互独立的”。独立关系是三项关系,在性质β和γ上是对称的。如果两种性质α和β在参考类α内是(相互)独立的,我们也可说性质γ在α内不受β元素的选择的影响;也许可说参考类α,就性质γ而言,不受按照性质β所
【打 印】 【来源:读书之家-dushuzhijia.com】