御制数理精蕴 - 第2部分

作者:【暂缺】 【297,284】字 目 录

也因有方圜众界之各异是以边线等者面积不等如众界形之毎一边与圜径俱设爲一○○○○则方面积爲一○○○○○○○○而圜面积爲七八五三九八一六三等边形之面积爲四三三○一二七○五等边形之面积爲一七二○四七七四一六等边形之面积爲二五九八○七六二○七等边形之面积爲三六三三九一二四○八等边形之面积爲四八二八四二七一二九等边形之面积爲六一八一八二四二○十等边形之面积爲七六九四二○八八三此各形之面积皆以方积比例者也或以圜面积设爲一○○○○○○○○则圜径得一一二八三小余七九一六如圜径与众界形之毎一边俱设爲一一二八三小余七九一六则圜面积爲一○○○○○○○○而三等边形之面积爲五五一三二八八九方面积爲一二七三二三九五四五等边形之面积爲二一九○五七九八六六等边形之面积爲三三○七九七三三四七等边形之面积爲四六二六八四○九八八等边形之面积爲六一四七七四四三五九等边形之面积爲七八七○九四三○二十等边形之面积爲九七九六五七○九九此各形之面积皆以圜积比例者也葢因各形之边线相等面积不同故皆定爲面与面之比例也面积等者边线不等如众界形之面积与圜面积俱设爲一○○○○○○○○○○○○○○○○则方边爲一○○○○○○○○而圜径爲一一二八三七九一六三等边形之毎边爲一五一九六七一三七五等边形之毎边爲七六二三八七○五六等边形之毎边爲六二○四○三二四七等边形之毎边爲五二四五八一二六八等边形之毎边爲四五五○八九八五九等边形之毎边爲四○二一九九六三十等边形之毎边爲三六○五一○五八此各形之边线皆以方边比例者也或以圜径设爲一○○○○○○○○则圜面积爲七八五三九八一六三三九七四四八三如圜面积与众界形之面积俱设爲七八五三九八一六三三九七四四八三则圜径爲一○○○○○○○○而二等边形之毎边爲一三四六七七三六九四等边形【卽正方】之毎边爲八八六二二六九二五等边形之毎边爲六七五六四七九三六等边形之毎边爲五四九八一八○五七等边形之毎边爲四六四八九八○三八等边形之毎边爲四○三三一二八八九等边形之毎边爲三五六四四○一四十等边形之毎边爲三一九四九四一八此各形之边线皆以圜径比例者也葢因各形之面积相等边线不同故皆定爲线与线之比例也然自众界形之中心分之则又各成三角形皆以勾股爲准则故勾股三角形虽爲面而不囿于面之中却别立一章焉要之众界形边求积者归之勾股积求边者归之正方引而伸之触类而长之凡爲面形者不能违是也

直线形

设如正方形每边五十尺问对角斜线几何

法以方边五十尺自乗得二千五百尺倍之得五千尺开方得七十尺七寸一分零六豪有余即所求之对角斜线也如图甲乙丙丁正方形其甲乙乙丙丙丁丁甲每边皆五十尺甲丙为所求对角斜线甲乙为股则乙丙为勾乙丙为股则甲乙为勾因甲乙与乙丙相等皆可互为勾股故以一边自乗倍之开方得卽如各自乗相并开方而得也又用定率比例法以定率之方边一○○○○○○○爲一率对角斜线一四一四二一三五为二率今所设之方边五十尺为三率求得四率七十尺七寸一分零六豪有余卽所求之对角斜线也葢定率设方边为一千万其对角斜线为一千四百一十四万二千一百三十五故定率之方边一千万与定率之对角斜线一千四百一十四万二千一百三十五之比卽如今所设之方边五十尺与所求之对角斜线七十尺七寸一分零六豪有余之比也

若有对角斜线求方边则以对角斜线自乗折半开方所得为正方形之每一边也葢甲丙自乗之方与甲乙股乙丙勾两正方相并之积等今以甲丙自乗折半则必与甲乙或乙丙自乗之一正方相等故开方而得每一边也或用定率比例法以定率之对角斜线一四一四二一三五为一率方边一○○○○○○○为二率今所设之对角斜线为三率求得四率卽方边也

设如正方形每边二尺今将其积倍之问得方边几何

法以每边二尺自乗得四尺倍之得八尺开方得二尺八寸二分八厘四豪有余卽所求之方边数也如图甲乙丙丁正方形每边二尺其面积四尺倍之得八尺卽如戊乙己庚正方形其每边即甲乙丙丁方形之对角斜线试于戊乙己庚正方形内作甲乙丙丁正方形以乙为心戊为界作戊己弧与丁角相切则丁乙与己乙皆为半径其度相等葢丁乙对角斜线自乗之方为甲乙边自乗之方之二倍故戊乙己庚正方形卽为甲乙丙丁正方形之二倍而戊甲丁丙己庚磬折形积即与甲乙丙丁正方形积相等也

设如正方形每边二尺今将其积四倍之问得方边几何

法以每边二尺倍之得四尺卽所求之方边数也如图甲乙丙丁正方形每边二尺其面积四尺四倍之得一十六尺卽如戊乙己庚正方形之面积其每边得甲乙丙丁正方形每边之二倍是故不用四倍其积开方止以每边二尺倍之而卽得也此法葢因两方面之比例比之两界之比例为连比例隔一位相加之比例【见几何原本七卷第五节】故戊乙己庚正方面积一十六尺与甲乙丙丁正方面积之四尺相比为四分之一而戊乙己庚正方边之四尺与甲乙丙丁正方边之二尺之比为二分之一夫十六与八八与四四与二皆为二分之一之连比例而十六与四之比其间隔八之一位故为连比例隔一位相加之比例也

设如长方形长十二尺阔八尺今将其积倍之仍与原形为同式形问得长阔各几何

法以阔八尺自乗得六十四尺倍之得一百二十八尺开方得一十一尺三寸一分三厘七豪有余即所求之阔旣得阔乃以原阔八尺为一率原长十二尺为二率今所得阔一十一尺三寸一分三厘七豪有余为三率求得四率一十六尺九寸七分零五豪有余卽所求之长也或以长十二尺自乗倍之开方亦得一十六尺九寸七分零五豪有余为所求之长也如图甲乙丙丁长方形甲乙阔八尺甲丁长十二尺将其积倍之即如戊己庚辛长方形此两长方面积之比例卽同于其相当二界各作一正方面积之比例【见几何原本七卷第七节】故依甲乙丙丁长方形之丁丙阔界作丁丙壬癸正方形将其积倍之卽如戊己庚辛长方形之辛庚阔界所作之辛庚子丑正方形故开方得辛庚为所求之阔也既得辛庚之阔则以甲乙与甲丁之比卽同于戊己与戊辛之比得戊辛为所求之长也若以原长自乗倍之开方卽如以二长界各作一正方形互相为比例也

设如长方形长十二尺阔八尺今将其积四倍之仍与原形为同式形问得长阔各几何

法以阔八尺倍之得十六尺卽所求之阔又以原长十二尺倍之得二十四尺即所求之长也如图甲乙丙丁长方形甲乙阔八尺甲丁长十二尺将其积四倍之卽如戊己庚辛长方形其每边得甲乙丙丁长方形每边之二倍是故不用四倍其积开方止以各边之数倍之而即得也此法葢因两长方面之比例既同于其相当二界各作一正方面之比例而两正方面之比例比之二界之比例为连比例隔一位相加之比例故两长方面之比例较之两界之比例亦为连比例隔一位相加之比例也

设如三角形面积三千尺底阔八十尺问中长几何法以积三千尺倍之得六千尺用底阔八十尺除之得七十五尺卽所求之长也如图甲乙丙三角形其积倍之成丁乙丙戊长方形乙丙为底阔故以底阔除长方积得甲己为中长也

设如两两等边无直角斜方形【一日象目形】小边皆二十五丈大边皆三十九丈对两小角斜线五十六丈问面积防何

法以对角斜线分斜方形为两三角形算之以对角斜线五十六丈为底大边三十九丈小边二十五丈为两腰用三角形求中垂线法求得中垂线十五丈乃以对角斜线五十六丈与中垂线十五丈相乗得八百四十丈即斜方形之面积也如图甲乙丙丁斜方形甲丁乙丙二小边皆二十五丈甲乙丁丙二大边皆三十九丈甲丙对两小角斜线五十六丈今以甲丙斜线分甲乙丙丁斜方形为甲乙丙甲丁丙两三角形俱以甲丙为底甲丁与丁丙为两腰求得丁戊或乙己皆为中垂线故以甲丙斜线与丁戊垂线相乗所得甲丙庚辛长方形比甲丁丙三角形积大一倍而甲乙丙丁斜方形亦函两三角形积故所得之甲丙庚辛长方形与甲乙丙丁斜方形之面积相等也

设如不等边两直角斜方形直角之边长五十丈上阔二十丈下阔二十八丈问面积几何

法以上阔二十丈与下阔二十八丈相加得四十八丈折半得二十四丈与长五十丈相乗得一千二百丈即斜方形之积面也如图甲乙丙丁斜方形以上阔甲丁与下阔乙丙相加得乙戊折半为乙己与甲乙长相乗遂成甲乙己庚长方形其斜方外所多之丁庚辛勾股形与斜方内所少之辛己丙勾股形之

积等故所得之甲乙己庚长方形即甲乙丙丁斜方形之面积也

又法上阔下阔相并与长相乗得数折半即斜方形之面积也葢前法上阔下阔相加折半而后与长相乗此法则上阔下阔相加卽与长相乗而后折半其理一也

设如梯形长三十丈上阔十二丈下阔二十丈问面积防何

法以上阔十二丈与下阔二十丈相加得三十二丈折半得十六丈与长三十丈相乗得四百八十丈即梯形之面积也如图甲乙丙丁梯形以上阔甲丁与下阔乙丙相加得乙戊折半为乙己与丁己长相乗遂成庚乙己丁长方形其梯形外所多之甲庚乙勾股形与梯形内所少之丁己丙勾股形之面积等故所得之庚乙己丁长方形卽甲乙丙丁梯形之面积也

又法以上阔下阔相并与长相乗得数折半即梯形之面积也

设如三角形自尖至底中长二百尺底阔一百五十尺今欲自尖截长一百二十尺问截阔防何法以中长二百尺为一率底阔一百五十尺为二率截长一百二十尺为三率求得四率九十尺即所截之阔也如图甲乙丙三角形甲丁中长二百尺乙丙底阔一百五十尺甲戊为所截长一百二十尺而甲丁与乙丙之比即同于甲戊与己庚之比也如以截阔求截长则以底阔为一率中长为二率截阔为三率所得四率即所截之长也

设如不等边两直角斜方形长九十尺上阔二十尺下阔三十八尺今欲截中阔二十七尺问上下各截长防何

法以上阔二十尺与下阔三十八尺相减余一十八尺为一率长九十尺为二率以上阔二十尺与所截中阔二十七尺相减余七尺为三率求得四率三十五尺即上所截之长以上所截之长三十五尺与总长九十尺相减余五十五尺即下所截之长也如欲先得下所截之长则仍以上阔二十尺与下阔三十八尺相减余一十八尺为一率长九十尺为二率乃以所截中阔二十七尺与下阔三十八尺相减余一十一尺为三率求得四率五十五尺即下所截之长也如图甲乙丙丁斜方形甲乙为长九十尺与丁戊等乙丙为下阔三十八尺甲丁为上阔二十尺与乙戊等己庚为所截中阔二十七尺上阔与下阔相减余戊丙十八尺上阔与所截中阔相减余辛庚七尺而戊丙与丁戊之比即同于辛庚与丁辛之比也又甲乙丙丁斜方形上阔与下阔相减余戊丙十八尺所截中阔与下阔相减余壬丙十一尺而戊丙与丁戊之比又同于壬丙与庚壬之比也如有所截上长或所截下长求截阔则以总长为一率上下阔相减所余为二率截长为三率求得四率有上截长则与上阔相加有下截长则与下阔相减所得即所截之阔也

设如梯形面积一千五百尺下阔四十尺中长五十尺问上阔几何

法以积一千五百尺倍之得三千尺用长五十尺除之得六十尺为上下两阔相和之数内减下阔四十尺余二十尺即上阔也如图甲乙丙丁梯形倍之成甲乙己戊斜方形试将己角取直作己辛线则截斜方形一叚为己辛戊勾股形如以己辛戊勾股形移补于甲庚乙遂成庚乙己辛长方形其积原与甲乙己戊斜方形等今用庚乙中长除之得乙己即上下两阔相和之数内减乙丙下阔所余丙己与甲丁等即上阔也

设如不等边两直角斜方形积九千六百尺长一百二十尺上下两阔相差之较四十尺问上阔下阔各防何

法以积九千六百尺倍之得一万九千二百尺用长一百二十尺除之得一百六十尺为上下两阔相和之数内减上下两阔相差之较四十尺余一百二十尺折半得六十尺为上阔加上下两阔相差之较四十尺得一百尺即下阔也如图甲乙丙丁斜方形其甲乙长一百二十尺甲丁上阔与乙丙下阔相差戊丙四十尺试将原积倍之遂成甲乙己庚长方形故以甲乙长除之得乙己为上下阔相和之数内减戊丙上下两阔相差之较余数折半得乙戊与甲丁等

为上阔加戊丙较得乙丙为下阔也

设如梯形面积六千六百五十尺长九十五尺上下两阔相差之较二十尺问上阔下阔各几何法以积六千六百五十尺倍之得一万三千三百尺用长九十五尺除之得一百四十尺为上下两阔相和之数内减上下两阔相差之较二十尺余一百二十尺折半得六十尺为上阔加上下两阔相差之较二十尺得八十尺为下阔也如图甲乙丙丁梯形甲戊长九十五尺甲丁上阔与乙丙下阔相差乙戊与己丙共二十尺试将原积倍之成甲乙庚辛斜方形与壬乙庚癸长方形之积等故以

打 印】 【来源:读书之家-dushuzhijia.com】