为小勾所得三十六尺为小股相乘得四百三十二尺折半得二百一十六尺为斜方形上所增之小勾股形积与截积一百六十八尺相加得三百八十四尺为所截之勾股形积乃用勾股形从上段截勾股积法算之而得所截之阔焉如图甲乙丙丁斜方形增作勾股形为壬乙丙其
上阔甲丁与下阔乙丙相减所余为戊丙以戊丙与丁戊之比同于甲丁与壬甲之比得壬甲为小勾股形之股以壬甲与甲乙相加得壬乙为大勾股形之股又壬甲丁勾股形积与甲己庚丁斜方形截积相加得壬己庚勾股形积即壬乙丙大勾股形从上段截壬己庚勾股形积也
设如不等边两直角斜方形长二十四尺上阔十二尺下阔二十尺今从下段截积二百一十六尺求截长阔各几何
法以长二十四尺为一率下阔二十尺内减上阔十二尺余八尺为二率截积二百一十六尺倍之得四百三十二尺为三率求得四率一百四十四尺乃以下阔二十尺自乘得四百尺内减所得四率一百四十四尺余二百五十六尺开方得一十六尺为所截之阔既得所截之阔则以上下两阔相减之较八尺为一率长二十四尺为二率下阔二十尺内减截阔十六尺余四尺为三率求得四率十二尺即所截下段之长也此与勾股形从下叚截斜方形积之理同前法从上段截积所得四率为上阔与截阔各自乘相减之余积上阔小而截阔大故以上阔自乘与所得四率相加开方而得截阔此法从下段截积所得四率为下阔与截阔各自乘相减之余积下阔大而截阔小故以下阔自乘内减所得四率开方而得截阔也
设如梯形长十二丈上阔五丈下阔十一丈今从上段截积二十四丈问截长阔各几何
法以长十二丈为一率上阔五丈与下阔十一丈相减余六丈为二率截积二十四丈倍之得四十八丈为三率求得四率二十四丈乃以上阔五丈自乘得二十五丈与所得四率二十四丈相加得四十九丈开方得七丈即所截之阔既得所截之阔则以上下两阔相减之较六丈为一率长十二丈为二率截阔七丈内减上阔五丈余二丈为三率求得四率四丈即所截之长也此法亦系一率与二率为线与线之比例三率与四率为面与面之比例也如图甲乙丙丁梯形甲戊长十二丈甲丁上阔五丈戊己庚辛俱相等乙丙下阔十一丈乙戊与己丙两段为上下两阔相减之较六丈甲壬癸丁小梯形为截积二十四丈是故甲戊总长与乙戊己丙上下两阔之较之比应同于甲庚截长与壬庚辛癸上中两阔之较之比然无甲庚之数故将截积倍之为甲庚截长与甲丁壬癸上中两阔之和相乘之长方形为三率所得四率即壬庚辛癸上中两阔之较与甲丁壬癸上中两阔之和相乘之长方形也又壬庚辛癸上中两阔之较与甲丁壬癸上中两阔之和相乘之积与甲丁壬癸上中两阔之数各自乘相减之余积等故以所得四率长方形积与甲丁自乘方积相加即得壬癸自乗方积开方而得壬癸为所截之阔也既得壬癸截阔则以上下两阔相减之乙戊己丙两叚与甲戊总长之比卽同于上中两阔相减之壬庚辛癸两叚与甲庚截长之比矣
又法将梯形增作三角形算之以上阔五丈与下阔十一丈相减余六丈为一率长十二丈为二率上阔五丈为三率求得四率十丈为梯形上所増小三角形之中长与梯形之长十二丈相加得二十二丈为梯形与所増小三角形相并所成之大三角形之中长乃以上阔
五丈为底所得十丈为中长相乗得五十丈折半得二十五丈为梯形上所増之小三角形积与截积二十四丈相加得四十九丈为所截之三角形积乃用三角形从上段截三角积法算之而得所截之阔焉如图甲乙丙丁梯形增作三角形为子乙丙其上阔甲丁与下阔乙丙相减所余为乙戊己丙而乙戊己丙与甲戊之比即同于甲丁与子丑之比得子丑为小三角形之中长以子丑与等甲戊之丑寅相加得子寅为大三角形之中长又子甲丁三角形积与甲壬癸丁斜方形截积相加得子壬癸三角形积即子乙丙大三角形从上段截子壬癸三角形积也
设如梯形长十二丈上阔五丈下阔十一丈今自下叚截积七十二丈问截长阔各几何
法以长十二丈为一率上阔五丈与下阔十一丈相减余六丈为二率以截积七十二丈倍之得一百四十四丈为三率求得四率七十二丈乃以下阔十一丈自乗得一百二十一丈内减所得四率七十二丈余四十九丈开方得七丈即所截之阔既得所截之阔则以上下两阔相减之较六丈为一率长十二丈为二率截阔七丈与下阔十一丈相减余四丈为三率求得四率八丈即所截之长也如图甲乙丙丁梯形甲戊长十二丈甲丁上阔五丈与戊己等乙丙下阔十一丈乙戊与己丙两段为上下两阔相减之较六丈庚乙丙辛梯形为截积七十二丈是故甲戊总长与乙戊己丙上下两阔之较之比应同于庚壬截长与乙壬癸丙中下两阔之较之比然无庚壬之数故将截积倍之为庚壬截长与庚辛乙丙中下两阔之和相乗之长方形为三率所得四率卽乙壬癸丙中下两阔之较与庚辛乙丙中下两阔之和相乗之长方形也又乙壬癸丙中下两阔之较与庚辛乙丙中下两阔之和相乗之积与庚辛乙丙中下两阔之数各自乗相减之余积等故以所得四率长方形积与乙丙自乗方积相减即余庚辛自乗方积开方而得庚辛为所截之阔也
设如梯形长一百二十尺上阔二十尺下阔八十尺今自一边截勾股积四百五十尺问截长阔各几何
法以长一百二十尺为一率上阔二十尺与下阔八十尺相减余六十尺折半得三十尺为二率截积四百五十尺倍之得九百尺为三率求得四率二百二十五尺开方得一十五尺为所截之阔既得所截之阔则以上下两阔相减折半之三十尺为一率长一百二十尺为二率截阔十五尺为三率求得四率六十尺为所截之长也如图甲乙丙丁梯形甲丁上阔二十尺与戊己等乙丙下阔八十尺甲戊长一百二十尺乙戊为上下阔相减折半之三十尺庚乙辛为所截勾股积四百五十尺甲乙戊勾股形与庚乙辛勾股形为同式形故立算与勾股形从上段截勾股积之法相同也
设如梯形长一百二十尺上阔四十尺下阔八十尺今自一边截斜方形积四千二百尺问截上阔下阔各几何
法以上阔四十尺与下阔八十尺相减余四十尺折半得二十尺为所截斜方形上阔与下阔之较又以截积四千二百尺倍之得八千四百尺以长一百二十尺余之得七十尺为所截斜方形上阔与下阔之和内减上阔下阔之较二十尺余五十尺折半得二十五尺为上阔加较二十尺得四十五尺为下阔也如图甲乙丙丁梯形甲丁为上阔四十尺与戊己等乙丙为下阔八十尺甲戊为长一百二十尺甲乙辛庚为所截斜方形积四千二百尺倍之成壬癸辛庚长方形乙戊为所截斜方形上下两阔之较今以甲戊长除壬癸辛庚长方积得癸辛为上下两阔之和内减乙戊上下两阔之较余癸乙与戊辛折半得戊辛与甲庚等即所截斜方形之上阔加乙戊上下两阔之较得乙辛即所截斜方形之下阔也
设如三角形小腰边二十丈大腰边三十四丈底边四十二丈面积三百三十六丈今欲平分面积一半与原三角形为同式形问所截三边各几何法以原面积三百三十六丈为一率原面积折半得一百六十八丈为二率底边四十二丈自乗得一千七百六十四丈为三率求得四率八百八十二丈开方得二十九丈六尺九寸八分四厘八豪有余为所截之底边乃以全底边四十二丈为一率大腰边三十四丈为二率所截之底边二十九丈六尺九寸八分四厘八豪有余为三率求得四率二十四丈零四寸一分六厘二豪有余为所截之大腰边仍以全底边四十二丈为一率小腰边二十丈为二率所截之底边二十九丈六尺九寸八分有余为三率求得四率十四丈一尺四寸二分一厘三豪有余即所截之小腰边也如图甲乙丙三角形平分面积一半成丁戊丙三角形此两三角形既为同式形则甲乙丙三角形之面积与丁戊丙三角形之面积之比同于各边各自乗之正方面积与所截各边各自乗之正方面积之比故以甲乙丙三角形面积为一率丁戊丙三角形面积为二率乙丙底边自乗如乙己庚丙正方面为三率所得四率即戊丙截底自乗如戊辛壬丙正方面故开方得戊丙也既得戊丙则乙丙与甲丙之比同于戊丙与丁丙之比又乙丙与甲乙之比同于戊丙与丁戊之比俱为相当比例四率也若取原积三分之一或几分之几者则将其积以其分数归之比例并同
又法以乙丙边四十二丈自乗折半开方即得戊丙边甲丙边自乗折半开方即得丁丙边甲乙边自乗折半开方即得丁戊边此即面与面比线与线比之理也
又法设全积为一尺半积为五十寸乃以五十寸开方得七寸零七厘一豪零六忽而以各边之数乗之即得各边所截之数葢全积为一尺其全边亦为一尺半积为五十寸其截边为七寸零七厘一豪零六忽今以一尺与全边之比即同于七寸零七厘一豪零六忽与截边之比又因一尺为一率故省一率之除止用乗而即得也若取几分之一者皆仿此类推之
设如大小两正方面积共四百一十尺大正方边比小正方边多六尺问两正方边及面积各几何法以两正方面积共四百一十尺倍之得八百二十尺又以多六尺自乗得三十六尺与倍共积八百二十尺相减余七百八十四尺开方得二十八尺为大小两正方边之和加大正方比小正方每边所多六尺得三十四尺折半得十七尺为大正方之边内减六尺余十一尺为小正方之边以大正方边十七尺自乗得二百八十九尺为大正方之面积以小正方边十一尺自乗得一百二十一尺为小正方之面积也如图甲乙丙丁一大正方形丁戊己庚一小正方形戊丙为两正方边之较试以两正方之共积倍之则得甲辛壬庚一正方形仍余癸子丙戊两正方边之较自乗之一正方形葢癸丑壬己正方形与甲乙丙丁正方形等乙辛丑子正方形与丁戊己庚正方形等其中叠一癸子丙戊正方形即戊丙较自乗之积故以戊丙较自乗与所倍共积相减即得甲辛壬庚正方形开方得甲庚为两正方边之和加较折半得丁丙为大正方边内减戊丙较得丁戊为小正方边既得方边则各自乗即得各面积矣
又法以两正方边之较六尺自乗得三十六尺与两正方共积四百一十尺相
减余三百七十四尺折半得一百八十七尺为长方积以两正方边之较六尺为长阔之较用带纵较数开方法算之得阔十一尺为小正方之边加较六尺得十七尺为大正方之边也如图甲乙丙丁一大正方形丁戊己庚一小正方形戊丙为两正方边之较以戊丙边较自乗得辛壬丙戊一正方形与共积相减余甲乙壬辛己庚磬折形如以癸乙壬辛长方形移于庚己子丑即戊甲癸子丑一长方形折半得丁戊子丑一长方形庚丑与戊丙等即长阔之较故用带纵较数开方法算之得丁戊阔即小方边加庚丑较得丁丑与丁丙等即大方边也
设如大小两正方面积共六百一十七尺大小两正方边共三十五尺问大小两正方边及面积各几何
法以两正方面积共六百一十七尺倍之得一千二百三十四尺又以两正方边共三十五尺自乗得一千二百二十五尺与倍共积一千二百三十四尺相减余九尺开方得三尺为大小两正方边之较与共边三十五尺相加得三十八尺折半得十九尺为大正方之边内减两正方边之较三尺余十六尺为小正方之边以大正方边十九尺自乗得三百六十一尺为大正方之面积以小正方边十六尺自乗得二百五十六尺为小正方之面积也如图甲乙丙丁一大正方形丁戊己庚一小正方形甲庚为两正方边之和戊丙为两正方边之较试以两正方之共积倍之则得甲辛壬庚正方形而多癸子丙戊较自乗之一正方形故以甲庚共边自乗得甲辛壬庚正方形与倍共积相减卽余癸子丙戊一小正方形开方得戊丙即两正方边之较与两正方边之和相加折半得丁丙为大正方边内减戊丙较得丁戊为小正方边旣得方边则各自乗卽得各面积矣
又法以两正方边之和三十五尺自乗得一千二百二十五尺内减两正方共积六百一十七尺余六百零八尺折半得三百零四尺为长方积以两正方边之和三十五尺为长阔和用带纵和数开方法算之得阔十六尺为小正方之边与共积三十五尺相减余十九尺为大正方之边也如图甲乙丙丁一大正方形戊己庚辛一小正方形以共边自乗得壬癸子丑一正方形内减与甲乙丙丁大正方形相等之寅癸卯辰一正方形又减与戊己庚辛小正方形相等之午辰己丑一正方形余壬寅辰午与辰卯子己二长方形折半得壬寅辰午一长方形其壬午长与甲乙大方边等壬寅阔与戊己小方边等两正方之共边卽长阔之和故用带纵和数开方法算之得阔为小方边得长为大方边也
设如大小两正方形大正方边比小正方边多七尺大正方积比小正方积多三百四十三尺问大小两正方边各几何
法以大正方积比小正方积所多三百四十三尺用大正方边比小正方边所多七尺除之得四十九尺为大小两正方边之和加两正方边之较七尺得五十六尺折半得二十八尺为大正方之边与共边四十九尺相减余二十一尺为小正方之边也如图甲乙丙丁一大正方形戊己庚辛一小正方形试于甲乙丙丁大正方形内作与戊己庚辛相等之甲壬癸子小正方形则壬乙丙丁子癸磬折形即大正方比小正方所多之积引而长之成壬
【打 印】 【来源:读书之家-dushuzhijia.com】