御制数理精蕴 - 第2部分

作者:【暂缺】 【297,284】字 目 录

三七九一六其比例仍同故以方边一○○○○○○○○为一率者即如以方边八八六二二六九二为一率而以圜径一一二八三七九一六为二率者即如以圜径一○○○○○○○○为二率也又法用圜周方周定率比例以圜周三五五为一率方周四五二为二率今所设之圜面积六尺一十六寸为三率求得四率七尺八十四寸三十一分五十四厘九十二豪九十五丝有余开方亦得二尺八寸零五豪六丝有余为圜之径数也

又法以十一分为一率十四分为二率今所设之圜面积六尺一十六寸为三率求得四率七尺八十四寸开方得二尺八寸为圜之径数也葢径七围二十二之定率其径既小则方周与方积亦皆小故开方所得之圜径亦小也

设如圜面积六尺一十六寸问周几何

法以圜面积六尺一十六寸用圜积求径法求得圜径二尺八寸零五豪六丝有余又用圜径求周法求得八尺七寸九分八厘二豪二丝有余即圜之周数也

又法用圜积与圜周方积定率比例以圜积一○○○○○○○○为一率圜周方积一二五六六三七○六二为二率今所设之圜面积六尺一十六寸为三率求得四率七十七尺四十寸八十八分四十三厘零一豪有余开方得八尺七寸九分八厘二豪有余即圜之周数也葢圜积为七九五七七四七则圜周自乗方积为一○○○○○○○○若圜积为一○○○○○○○○则圜周自乗方积为一二五六六三七○六二其比例仍同故以圜积一○○○○○○○○与圜周自乗方积一二五六六三七○六二之比即同于今所设之圜面积六尺一十六寸与今所得之圜周自乗方积七十七尺四十寸八十八分四十三厘零一豪之比既得圜周自乗方积开方即得圜周也

设如撱圜形【一音鸭蛋形】大径九尺小径六尺问面积几何

法以大径九尺与小径六尺相乗得五十四尺为长方积乃用方边圜径相等方积圜积不同之定率比例以方积一○○○○○○○○为一率圜积七八五三九八一六为二率今所得之大小径相乗之长方积五十四尺为三率求得四率四十二尺四十一寸一十五分零六十四豪即撱圜形之面积也葢圜面积与撱圜面积之比同于圜外所切之正方形积与撱圜形外所切之长方积之比【见几何原本八卷第十二节】则圜外所切之正方形积与圜面积之比亦必同于撱圜形外所切之长方形积与撱圜面积之比也如甲乙丙丁撱圜形甲丙大径九尺乙丁小径六尺以大径与小径相乗遂成戊己庚辛长方形此长方形积与撱圜形积之比即同于正方积与圜积之比故以定率之方积数为一率圜积数为二率今所得之大小径相乗之长方积为三率求得四率为撱圜形之面积也

设如撱圜形面积四十二尺四十一寸一十五分零六十四豪大径九尺问小径几何

法用圜径方边相等圜积方积不同之定率比例以圜积一○○○○○○○○为一率方积一二七三二三九五四为二率今所设之撱圜形面积四十二尺四十一寸一十五分零六十四豪为三率求得四率五十四尺为长方积以大径九尺除之得六尺即撱圜形之小径也葢方面积与圜面积之比既同于长方面积与撱圜形面积之比则圜面积与方面积之比亦必同于撱圜形面积与长方面积之比也如甲乙丙丁撱圜形用定率比例而得戊己庚辛长方形其戊己长与甲丙大径等其己庚阔与乙丁小径等故以大径除之得小径也如有小径求大径则以所得长方积用小径除之而得大径也

设如圆环形外周二十一尺三寸内周七尺一寸阔二尺二寸六分求面积几何

法以外周二十一尺三寸与内周七尺一寸相加得二十八尺四寸折半得一十四尺二寸以阔二尺二寸六分乗之得三十二尺零九寸二十分即圆环形之面积也如图甲乙丙丁圆环形甲乙外周二十一尺三寸丙丁内周七尺一寸甲丙与丁乙皆二尺二寸六分试依甲乙大圜之戊乙半径度与甲乙圜周度作一己庚辛直角三角形其己庚小边与甲乙大圜之戊乙半径等庚辛大边与大圜之周界等则己庚辛直角三角形之面积与甲乙大圜之面积等又依丙丁小圜之戊丁半径截己庚辛三角形之己庚小边于壬又依丙丁小圜周度作壬癸线与庚辛平行则成己壬癸一小直角三角形其面积与丙丁小圜之面积等如于己庚辛大三角形内减己壬癸小三角形所余癸辛庚壬斜尖方形之面积必与甲乙丙丁圆环形之面积等矣故如斜尖方形求积法以如丙丁内周之壬癸与如甲乙外周之庚辛相加折半得丑庚而以如丁乙阔之壬庚乗之得子丑庚壬一长方形与癸辛庚壬斜尖方形等即甲乙丙丁圆环形之面积也

设如圆环形外径二尺四寸内径一尺二寸求面积几何

法以外径二尺四寸求得周七尺五寸三分九厘八豪二丝有余又以内径一尺二寸求得周三尺七寸六分九厘九豪一丝有余乃以内径一尺二寸与外径二尺四寸相减余一尺二寸折半得六寸为圆环形之阔依前法算之得三尺三十九寸二十九分二十厘有余为圆环形之面积也

又法以外径二尺四寸自乗得五尺七十六寸又以内径一尺二寸自乗得一尺四十四寸两数相减余四尺三十二寸为方环面积乃用方积圜积定率比例以方积一○○○○○○○○为一率圜积七八五三九八一六为二率今所得之方环面积四尺三十二寸为三率求得四率三尺三十九寸二十九分二十厘有余即圆环形之面积也此法葢以方环圆环为比例即如用方积圜积定率为比例也分而言之则外径自乗与外大圜面积为比内径自乗与内小圜面积为比既得两圜面积相减始为圆环面积今以内外径各自乗相减即用方积圜积定率比例是合两比例而为一比例也

设如圆环形外周六尺六寸内周二尺二寸求面积几何

法以外周六尺六寸求得径二尺一寸零八豪四丝有余又以内周二尺二寸求得径七寸零二豪八丝有余两径相减余一尺四寸零五豪六丝有余折半得七寸零二豪八丝有余为圆环形之阔依前法算之得三尺零八寸一十二分三十二厘有余即圆环形之面积也又法以外周六尺六寸自乗得四十三尺五十六寸内周二尺二寸自乗得四尺八十四寸两数相减余三十八尺七十二寸乃用圜周方积与圜积定率比例以圜周方积一○○○○○○○○为一率圜积七九五七七四七为二率两周自乗相减之余三十八尺七十二寸为三率求得四率三尺零八寸一十二分三十九厘有余即圆环形之面积也此法葢以两圜周自乗相减之余积与圆环积为比例卽如用圜周方积圜积定率为比例也分而言之则外周自乗与外大圜面积为比内周自乗与内小圜面积为比既得两圜面积相减始为圆环面积今以内外周各自乗相减即用圜周方积圜积定率比例是合两比例而为一比例也

设如圆环形面积四百六十二尺阔七尺求内外径各几何

法以阔七尺除圆环面积四百六十二尺得六十六尺即内外周相并折半之数为中周乃以周求径法求得径二十一尺零八厘四豪五丝有余为内外径相并折半之数为中径加阔七尺得二十八尺零八厘四豪五丝有余卽外径中径内减阔七尺余一十四尺零八厘四豪五丝有余即内径也如图甲乙丙丁圆环形其面积四百六十二尺甲丙与丁乙皆七尺先所得之中周六十六尺为戊己周次所得之中径二十一尺零八厘四豪五丝有余为戊己径其甲戊与戊丙等丁己与己乙等故甲戊与己乙两段戊丙与丁己两段皆与丁乙及甲丙阔度等是以于中径内加阔得外径减阔得内径也

又法先用圜积方积定率比例以圜积一○○○○○○○○为一率方积一二七三二三九五四为二率圆环积四百六十二尺为三率求得四率五百八十八尺二十三寸六十六分六十七厘有余为方环积乃以阔七尺自乗得四十九尺以四因之得一百九十六尺与所得之方环积相减余三百九十二尺二十三寸六十六分六十七厘有余四归之得九十八尺零五寸九十一分六十六厘有余以阔七尺除之得一十四尺零八厘四豪五丝有余为内圜径加倍阔十四尺得二十八尺零八厘四豪五丝有余为外圜径也此法葢以圆环积变为方环积卽如前法方环积变为圆环积也如甲乙丙丁圆环形变为戊己庚辛壬癸子丑方环形内减戊寅壬辰卯已巳癸子午庚酉未丑申辛阔自乗之四正方形余寅卯癸壬癸巳午子丑子酉申辰壬丑未四长方形四归之余寅卯癸壬一长方形以寅壬阔除之得壬癸长与丙丁内径等加甲丙与丁乙得甲乙即外径也

设如圆环形面积三百零八尺阔七尺求内外周各几何

法以阔七尺除圆环面积三百零八尺得四十四尺为内外周相并折半之数为中周又用径求周法以径数一○○○○○○○○为一率周数三一四一五九二六五为二率阔七尺为三率求得四率二十一尺九寸九分一厘一豪四丝有余为内外周相减折半之数为半较乃以半较二十一尺九寸九分一厘一豪四丝有余与中周四十四尺相加得六十五尺九寸九分一厘一豪四丝有余卽外周数以半较二十一尺九寸九分一厘一豪四丝有余与中周四十四尺相减余二十二尺零八厘八豪六丝有余即内周数也如图甲乙丙丁圆环形其面积三百零八尺丁乙阔七尺试依甲乙大圜之戊乙半径度与甲乙圜周度作一己庚辛直角三角形则己庚辛三角形之面积与甲乙大圜之面积等又依丙丁小圜之戊丁半径截己庚辛三角形之己庚小边于壬又依丙丁小圜周度作壬癸线与庚辛平行则成己壬癸一小直角之三角形积乃与丙丁小圜之面积等如于己庚辛大三角形内减己壬癸小三角形所余癸辛庚壬斜尖方形之面积必与甲乙丙丁圆环面积等矣而癸辛庚壬斜尖方形积又与子丑庚壬长方形积等故以如丁乙阔之壬庚除之得丑庚为内外周相并折半之中周数又以寅庚全径与庚辛全周之比同于丁乙圆环阔【与子丑等】与辛丑半较之比葢丁乙为内外径相减折半之较辛丑即内外周相减折半之较为相当比例四率也既得辛丑与丑卯等即辛庚外周大于丑庚中周之较亦即癸壬内周【与卯庚等】小于丑庚中周之较故于中周加半较得外周减半较得内周也

设如圆环形面积三尺三十六寸内周一尺一寸求外周及阔各几何

法以内周一尺一寸用周求径法求得内径三寸五分零一豪有余又用周径求积法求得内周圜面积九寸六十二分七十七厘五十豪有余与圆环积三尺三十六寸相加得三尺四十五寸六十二分七十七厘五十豪有余即外周圆面积乃用圜积方积定率比例以圜积一○○○○○○○○为一率方积一二七三二三九五四为二率今所得之外周圜面积三尺四十五寸六十二分七十七厘五十豪有余为三率求得四率四尺四十寸零六分六十九厘一十七豪有余为外径自乗之方积开方得二尺零九分七厘七豪有余即外径减去内径三寸五分零一豪余一尺七寸四分七厘六豪折半得八寸七分三厘八豪即圆环形之阔又用径求周法求得周六尺五寸九分零一豪有余即外周数也

设如圆环形面积三百八十四尺外周八十八尺求内周及阔各几何

法以外周八十八尺用周求径法求得外径二十八尺零一分一厘二豪有余又用周径求积法求得外周圜面积六百一十六尺二十四寸六十四分有余内减去圆环积三百八十四尺余二百三十二尺二十四寸六十四分有余为内周圜面积乃用圜积方积定率比例以圜积一○○○○○○○○为一率方积一二七三二三九五四为二率今所得之内周圜面积二百三十二尺二十四寸六十四分为三率求得四率二百九十五尺七十寸五十二分九十九厘五十豪有余即内径自乗之方积开方得一十七尺一寸九分六厘有余即内径与外径二十八尺零一分一厘二豪相减余一十尺八寸一分五厘二豪有余折半得五尺四寸零七厘六豪即圆环形之阔又用径求周法求得周五十四尺零二分二厘八豪有余即内周数也

设如圜径一尺二寸今截弧矢形一段矢阔二寸四分求长几何

法以矢阔二寸四分为首率圜径一尺二寸内减矢阔二寸四分余九寸六分为末率首率末率相乗得二十三寸零四分开方得四寸八分为中率倍之得九寸六分即弧矢形之数也如图甲乙圜径一尺二寸截甲丙丁弧矢形其甲戊为矢阔二寸四分试自甲至丙作甲丙线自丙至乙作丙乙线遂成甲丙乙直角三角形而丙戊半即为其垂线故所截甲戊为首率戊乙为末率求得丙戊为中率【见几何原本九卷第二节并见勾股卷定勾股无零数法中】倍之得丙丁即弧矢形之也又法以圜径一尺二寸折半得半径六寸为矢阔二寸四分与半径六寸相减余三寸六分为勾求得股四寸八分倍之得九寸六分得弧矢形之数也如图甲乙圜径一尺二寸折半得甲己半径六寸与丙己等为又于甲己半径六寸内减甲戊矢阔二寸四分余戊己三寸六分为勾求得丙戊股倍之得丙丁为弧矢形之也

设如圜径一 尺七寸今截弧矢形一段长一尺五寸求矢阔几何

法以长一尺五寸折半得半七寸五分自乗得五十六寸二十五分为长方积以圜径一尺七寸为长阔和用带纵和数开方法算之得阔四寸五分卽矢之阔也如图甲乙圜径一尺七寸截甲丙丁弧矢形其丙丁为长一尺五寸自甲至丙自

打 印】 【来源:读书之家-dushuzhijia.com】