御制数理精蕴 - 第2部分

作者:【暂缺】 【297,284】字 目 录

自丙至乙作二线成甲丙乙直角三角形而丙戊为垂线故甲戊为首率戊乙为末率丙戊为中率中率自乗之正方与首率末率相乗之长方等今以丙丁折半得半丙戊自乗即与甲戊矢为阔戊乙截径为长相乗之长方等故以甲乙为长阔和求得甲戊阔即矢也

又法以圜径一尺七寸折半得八寸五分为以长一尺五寸折半得七寸五分为股求得勾四寸与半径八寸五分相减余四寸五分卽矢之阔也如图甲乙圜径一尺七寸折半得丙己半径八寸五分为丙丁一尺五寸折半得丙戊七寸五分为股求得戊己勾与甲己半径相减余甲戊卽矢之阔也又法以圜径一尺七寸为弧一尺五寸为股求得勾八寸与圜径一尺七寸相减余九寸折半得四寸五分卽矢之阔也如图甲乙圜径一尺七寸与丁庚等如自丙至庚作丙庚线则成丁丙庚直角三角形故以丁庚为丙丁为股求得丙庚勾与戊辛等以戊辛与甲乙全径相减余甲戊与辛乙两叚折半卽得甲戊为矢之阔也

设如弧矢形长一尺二寸矢阔四寸求圜径几何法以矢阔四寸为首率长一尺二寸折半得六寸为中率乃以中率六寸自乗用首率四寸除之得九寸为圜之截径加矢阔四寸得一尺三寸卽圜之径数也如图甲乙丙丁弧矢形甲丙长一尺二寸丁乙矢阔四寸试继甲丁丙弧作一全圜【法见几何原本十一卷十三节】将丁乙矢线引长作丁戊全径线又自甲至丁作甲丁线自甲至戊作甲戊线遂成丁甲戊直角三角形而甲乙半即为其中垂线故丁乙矢为首率乙戊截径为末率而甲乙半即为中率故丁乙与甲乙之比同于甲乙与乙戊之比而得乙戊截径加丁乙矢卽得丁戊为圜之全径也

设如弧矢形长八尺矢阔二尺求面积几何

法先用弧矢形有矢求圜径法求得圜之全径十尺折半得半径五尺为一率半四尺为二率以半径十万为三率求得四率八万为正数捡八线表得五十三度零七分四十九秒为半弧之度分倍之得一百零六度一十五分三十八秒为全弧之度分乃以全圜三百六十度化作一百二十九万六千秒为一率全弧一百零六度十五分三十八秒化作三十八万二千五百三十八秒为二率全径十尺求得全周三十一尺四寸一分五厘九豪二丝有余为三率求得四率九尺二寸七分二厘九豪八丝有余为全弧之数与半径五尺相乗得四十六尺三十六寸四十九分折半得二十三尺一十八寸二十四分五十厘为自圜心所分弧背三角形积又于半径五尺内减矢二尺余三尺与八尺相乗得二十四尺折半得十二尺为自圜心至所分直线三角形积与弧背三角形积二十三尺一十八寸二十四分五十厘相减余一十一尺一十八寸二十四分五十厘即弧矢形之面积也如图甲乙丙丁弧矢形甲丙长八尺丁乙矢阔二尺甲乙为半四尺试继此弧作一全圜求得丁戊全径【解见前】折半得己丁半径既得半径而甲乙半又即为甲丁半弧之正故比例得正数捡表而得甲丁半弧之度分倍之得甲丁丙全弧之度分又甲戊丙丁全圜之度分与甲丁丙全弧之度分之比同于甲戊丙丁全周之尺寸与甲丁丙全弧之尺寸之比而得甲丁丙全弧之数与己丁半径相乘折半即得甲己丙丁弧背三角形之面积又于丁己半径内减丁乙矢余乙己为截半径与甲丙相乘折半得甲己丙直线三角形面积与甲己丙丁弧背三角形面积相减余即甲乙丙丁弧矢形之面积也

设如圜形截弧矢一段所截弧度一百二十度弧界长二尺二寸求圜径及长矢阔各几何

法以截弧一百二十度为一率全圜三百六十度为二率截弧二尺二寸为三率求得四率六尺六寸为圜之周数用圜周求径法求得圜径二尺一寸零八豪四丝有余乃以半径十万为一率截弧一百二十度折半得六十度查正得八万六千六百零三倍之得一十七万三千二百零六即一百二十度之通为二率今所得之圜径二尺一寸零八豪四丝有余折半得一尺零五分零四豪二丝有余为三率求得四率一尺八寸一分九厘三豪九丝有余卽弧矢形之数又以半径十万为一率六十度之余五万与半径十万相减余五万卽六十度之正矢为二率今所得之半径一尺零五分零四豪二丝有余为三率求得四率五寸二分五厘二豪一丝有余即弧矢形之矢数也如图甲乙丙丁圜形截甲乙戊丁弧矢形一段知乙甲丁弧一百二十度又知乙甲丁弧界为二尺二寸求甲丙全径及乙丁甲戊矢则以乙甲丁弧一百二十度与甲乙丙丁全圜三百六十度之比卽同于乙甲丁弧界二尺二寸与甲乙丙丁全圜界六尺六寸之比也旣得全周求得甲丙全径折半于己心自己至乙作己乙半径线则乙戊卽如六十度之正乙丁卽如一百二十度之通甲戊即如六十度之正矢故以半径十万与一百二十度之通一十七万三千二百零六之比卽同于己乙半径一尺零五分零四豪二丝有余与乙丁全一尺八寸一分九厘三豪九丝有余之比又半径十万与六十度之正矢五万之比卽同于己乙半径与甲戊矢五寸二分五厘二豪一丝有余之比也

设如圜形截弧矢一段任自弧界一处对圜心至作一斜线长一尺二寸将全分为大小两段大段长一尺八寸小段长一尺六寸问圜径几何法以所作之斜线一尺二寸为一率截小段一尺六寸为二率大段一尺八寸为三率求得四率二尺四寸为自截处过圜心至圜对界之线将此线与所作之斜线一尺二寸相加得三尺六寸卽圜径也如图甲乙丙丁圜形截甲乙丁弧矢形任自圜界甲对圜心戊至乙丁上作甲己斜线将乙丁分为乙己己丁两段乙己小段一尺六寸己丁大段一尺八寸试将甲己斜线引长过圜心至圜对界丙作甲丙线又自甲至乙作甲乙线复自丁至丙作丁丙线遂成甲己乙丁己丙两同式三角形【乙角对甲丁弧丙角亦对甲丁弧甲角对乙丙弧丁角亦对乙丙弧两己角为对角故两三角形为同式形也】故以甲己与乙己之比即同于己丁与己丙之比既得己丙与甲己相加卽得甲丙为圜径也

设如圜形截弧矢一段任自弧界一处至作一垂线长一尺二寸将全分为大小两段其大段长三尺小段长一尺问圜径几何

法以所作垂线一尺二寸为一率截小段一尺为二率大段三尺为三率求得四率二尺五寸为自截处至圜对界之直线乃以此线与所作之垂线一尺二寸相加得三尺七寸为股以截小段一尺与大段三尺相减余二尺为勾求得四尺二寸卽圜径也如图甲乙丙丁圜形截甲乙丁弧矢形任自弧界甲至乙丁上作甲戊线长一尺二寸将乙丁分为乙戊戊丁两叚乙戊小段一尺戊丁大叚三尺试将甲戊线引长至圜对界丙作甲丙线又自甲至乙作甲乙线复自丁至丙作丁丙线遂成甲戊乙丁戊丙两同式三角形【乙角对甲丁弧丙角亦对甲丁弧甲角对乙丙弧丁角亦对乙丙弧两戊角俱为直角故两三角形为同式形也】故以甲戊与戊乙之比同于丁戊与戊丙之比既得戊丙与甲戊相加即得甲丙又以乙戊【同己丁】与戊丁相减余戊己与甲庚等乃自甲至庚作甲庚线与乙丁平行则甲角为直角必立于圜界之一半又自庚至丙作庚丙线则又成庚甲丙勾股形故以庚甲为勾甲丙为股求得庚丙即圜径也

设如一大圜形内容四小圜形但知大圜形径一尺二寸求小圜形径几何

法以大圜形径一尺二寸自乘倍之开方得一尺六寸九分七厘零五丝有余内减大圜形径一尺二寸余四寸九分七厘零五丝有余即小圜形径也如图甲大圜形内容乙丙丁戊四小圜形试切甲大圜形界作己庚辛壬正方形其方边即大圜形全径用方边求斜法求得壬庚己辛两斜即成己甲壬己甲庚庚甲辛壬甲辛四勾股形内各容一小圜形而四方边遂为四勾股形之各两斜各折半遂各为四勾股形之各勾股任取一勾股和减即得容圜全径也【觧见勾股容圜法中】

设如一大圜形内容四小圜形但知小圜形径五寸求大圜形径几何

法以小圜形径五寸自乘倍之开方得七寸零七厘一豪有余加小圜形径五寸得一尺二寸零七厘一豪有余即大圜形径也如图甲大圜形内容乙丙丁戊四小圜形试连四小圜形中心作乙丙丙丁丁戊戊乙四线遂成乙丙丁戊一正方形用方边求斜法求得乙丁斜加己乙与丁庚两半径【即一小圜形之全径】即得己庚大圜形全径也

设如一大圜形内容三小圜形但知大圜形径一尺二寸求内容小圜形径几何

法以大圜形径一尺二寸求得外切三角形之每边为二尺零七分八厘四豪六丝有余乃以大圜形径一尺二寸为三角形之两腰半径六寸为中埀线用三角形容圜法求得容圜半径二寸七分八厘四豪六丝有余倍之得五寸五分六厘九豪二丝有余卽小圜形全径也如图甲大圜形内容乙丙丁三小圜形试求外切甲大圜界戊己庚三角形自圜心甲至戊己庚三角各作一分角线皆与圜之全径等卽成戊甲己己甲庚戊甲庚三三角形内各容一小圜形故任以两全径为两腰一半径为中线用三角形容圜法算之卽得一小圜径也

设如一大圜形内容三小圜形但知小圜形径五寸求大圜形径几何

法以小圜形径五寸为等边三角形之每一边用等边三角形求外切圜形全径法求得外切圜径五寸七分七厘三豪五丝有余加小圜全径五寸得一尺零七分七厘三豪五丝有余卽大圜形

全径也如图甲大圜形内容乙丙丁三

小圜形试连三小圜形中心作乙丙乙

丁丙丁三线遂成乙丙丁等边三角形

其毎边皆与小圜全径等又切乙丙丁

三角作一圜形用等边三角形求外切

圜形全径法【解见三角形卷】求得乙戊径线加

己乙与戊庚两半径【即一小圜形之全径】卽得己

庚大圜形全径也

御制数理精蕴下编卷二十

<子部,天文算法类,算书之属,御制数理精蕴>

钦定四库全书

御制数理精蕴下编卷二十一

面部十一

圜内容各等边形

圜外切各等边形

圜内容各等边形

设如圜径一尺二寸求内容三等边形之每一边及面积几何

法以圜径一尺二寸为半径六寸为勾求得股一尺零三分九厘二豪三丝有余为圜内容三等边形之每一边爰以三等边形之每一边为每一边折半为勾求得股九寸或以圜径一尺二寸取其四分之三亦得九寸为圜内容三等边形之中垂线乃以每一边之一尺零三分九厘二豪三丝有余与中垂线九寸相乘得九十三寸五十三分零七厘有余折半得四十六寸七十六分五十三厘有余即圜内容三等边形之面积也如图甲乙圜径一尺二寸内容甲丙丁三等边形试自丁至乙作丁乙线即圜内容六等边形之每一边与丁戊半径等甲乙全径丁乙半径与甲丁边遂成甲丁乙勾股形故以甲乙全径为丁乙半径为勾求得甲丁股即圜内容三等边形之每一边也其甲己中垂线即甲丁己丁勾所求之股又为圜径四分之三既得一边又得中垂线即如三角形求面积法算之而得圜内容三等边形之面积也

又法以全圜三百六十度三分之每分得一百二十度折半得六十度乃以半径十万为一率六十度之正八万六千六百零三为二率今所设之半径六寸为三率求得四率五寸一分九厘六豪一丝八忽倍之得一尺零三分九厘二豪三丝六忽为圜内容三等边形之每一边既得每一边之数乃取圜径四分之三为中垂线与每一边之数相乘折半得四十六寸七十六分五十六厘有余即圜内容三等边形之面积也如图甲乙圜径一尺二寸内容甲丙丁三等边形每一边之弧皆一百二十度试将甲丙边折半于戊自圜心己作己戊庚半径线遂平分甲丙弧于庚则甲庚弧为六十度甲戊即六十度之正甲丙即一百二十度之通是故半径十万与六十度之正之比即如所设之半径六寸与甲戊之半边之比既得半边倍之即全边也

又用求圜内各形之一边之定率比例以定率之圜径一○○○○○○○○为一率圜内容三等边形之毎一边八六六○二五四○为二率今所设之圜径一尺二寸为三率求得四率一尺零三分九厘二豪三丝有余即圜内容三等边形之每一边也

又用求圜内各形之面积之定率比例以定率之圜径自乘之正方面积一○○○○○○○○为一率圜内容三等边形之面积三二四七五九五三为二率今所设之圜径一尺二寸自乘得一尺四十四寸为三率求得四率四十六寸七十六分五十三厘有余即圜内容三等边形之面积也

又用圜面积之定率比例以定率之圜面积一○○○○○○○○为一率圜内容三等边形之面积四一三四九六六七为二率今所设之圜径一尺二寸求得圜面积一尺一十三寸零九分七十三厘有余为三率求得四率四十六寸七十六分五十三厘有余即圜内容三等边形之面积也

设如圜径一尺二寸求内容四等边形之每一边及面积几何

法以圜径一尺二寸折半得半径六寸自乘得三十六寸倍之得七十二寸开方得八寸四分八厘五豪二丝八忽有余为圜内容四等边形之每一边其半径自乘倍之所得七十二寸即圜内容四等边形之面积也如图甲乙圜径一尺二寸内容甲丙乙丁四等边形试自圜心戊至丁角

打 印】 【来源:读书之家-dushuzhijia.com】