面积也
设如圜径一尺二寸求内容十等边形之每一边及面积几何
法以圜径一尺二寸折半得半径六寸为首率用连比例三率有首率求中率末率使中率末率相加与首率等之法求得中率三寸七分零八豪二丝有余即圜内容十等边形之每一边【详见割圜卷中】爰以半径六寸为十等边形之每一边折半得一寸八分五厘四豪一丝有余为勾求得股五寸七分零六豪三丝三忽有余为自圜心至每一边之中垂线乃以每一边折半之数与中垂线相乘得一十寸五十八分零一厘有余十因之得一尺零五寸八十分一十厘有余即圜内容十等边形之面积也如图甲乙圜径一尺二寸内容甲丙丁戊己乙庚辛壬癸十等边形其子乙半径为首率己乙每一边为中率其毎一边皆三寸七分零八豪二丝有余试自圜心子至每角各作一半径线即分十等边形为十三角形以子乙半径为己乙折半得丑乙为勾求得股为子丑中垂线用三角形求面积法算之得子己乙一三角形之面积十倍之而得圜内容十等边形之总面积也
又法以全圜三百六十度十分之毎分得三十六度折半得十八度乃以半径十万为一率十八度之正三万零九百零二为二率今所设之半径六寸为三率求得四率一寸八分五厘四豪一丝二忽倍之得三寸七分零八豪二丝四忽为圜内容十等边形之毎一边次以半径十万为一率十八度之余九万五千一百零六为二率今所设之半径六寸为三率求得四率五寸七分零六豪三丝六忽为自圜心至毎一边之中垂线与每一边折半之数相乘十因之得一尺零五寸八十分二十七厘有余为圜内容十等边形之面积也如图甲乙圜径一尺二寸内容甲丙丁戊己乙庚辛壬癸十等边形每一边之弧皆三十六度试将甲丙边折半于子自圜心丑作丑子寅半径线遂平分甲丙弧于寅则甲寅弧为十八度甲子即十八度之正甲丙即三十六度之通丑子即十八度之余是故半径十万与十八度之正之比即如所设之半径六寸与甲子之半边之比既得半边倍之即全边又半径十万与十八度之余之比即如所设之半径六寸与丑子中垂线之比也
又用求圜内各形之一边之定率比例以定率之圜径一○○○○○○○○为一率圜内容十等边形之每一边三○九○一六九九为二率今所设之圜径一尺二寸为三率求得四率三寸七分零八豪二丝有余即圜内容十等边形之每一边也
又用求圜内各形之面积之定率比例以定率之圜径自乘之正方面积一○○○○○○○○为一率圜内容十等边形之面积七三四七三一五六为二率今所设之圜径一尺二寸自乘得一尺四十四寸为三率求得四率一尺零五寸八十分一十三厘有余即圜内容十等边形之面积也
又用圜面积之定率比例以定率之圜面积一○○○○○○○○为一率圜内容十等边形之面积九三五四八九二八为二率今所设之圜径一尺二寸求得圜面积一尺一十三寸零九分七十三厘有余为三率求得四率一尺零五寸八十分一十三厘有余即圜内容十等边形之面积也
圜外切各等边形
设如圜径一尺二寸求外切三等边形之每一边及
面积几何
法以圜径一尺二寸为半径六寸为勾求得股一尺零三分九厘二豪三丝有余倍之得二尺零七分八厘四豪六丝有余为圜外切三等边形之毎一边爰以三等边形之每一边为毎一边折半为勾求得股一尺八寸或以半径六寸三倍之得一尺八寸为圜外切三等边形之中垂线乃以每一边之二尺零七分八厘四豪六丝有余与中垂线一尺八寸相乘得三尺七十四寸一十二分二十八厘有余折半得一尺八十七寸零六分一十四厘有余即圜外切三等边形之面积也如图甲乙圜径一尺二寸外切丙丁戊三等边形试将丙丁边折半于己自圜心庚作庚己半径线则成丙巳庚三角形其丙庚巳角为六十度丙巳庚角为九十度庚丙巳角为三十度又自甲至己作甲己线为圜内容六等边形之每一边则又成甲己庚甲己丙两三角形其甲己庚三角形之甲己庚角为六十度故甲己丙三角形之甲己丙角为三十度而甲丙己角亦为三十度则丙甲与甲己皆与半径等矣故丙庚即全径为庚己即半径为勾求得丙己股倍之得丙丁为圜外切三等边形之每一边也又丙甲既与半径等则丙乙中垂线为半径之三倍用三角形求面积法算之而得圜外切三等边形之面积也
又法以全圜三百六十度三分之每分得一百二十度折半得六十度乃以半径十万为一率六十度之正切一十七万三千二百零五为二率今所设之半径六寸为三率求得四率一尺零三分九厘二豪三丝倍之得二尺零七分八厘四豪六丝为圜外切三等边形之毎一边也既得三等边形之每一边乃以半径三因之与毎一边之数相乘折半得一尺八十七寸零六分一十四厘为圜外切三等边形之面积也如图甲乙圜径一尺二寸外切丙丁戊三等边形每一边之弧皆一百二十度试将丙丁边折半于己自圜心庚作庚己半径线则甲己弧为六十度丙己即六十度之正切丙丁即六十度正切之倍是故半径十万与六十度之正切之比即如所设之半径六寸与丙己之半边之比既得半边倍之即全边也
又用求圜外各形之一边之定率比例以定率之圜径一○○○○○○○○为一率圜外切三等边形之每一边一七三二○五○八○为二率今所设之圜径一尺二寸为三率求得四率二尺零七分八厘四豪六丝即圜外切三等边形之每一边也
又用求圜外各形之面积之定率比例以定率之圜径自乘之正方面积一○○○○○○○○为一率圜外切三等边形之面积一二九九○三八一○为二率今所设之圜径一尺二寸自乘得一尺四十四寸为三率求得四率一尺八十七寸零六分一十四厘有余即圜外切三等边形之面积也
又用圜面积之定率比例以定率之圜面积一○○○○○○○○为一率圜外切三等边形之面积一六五三九八六六九为二率今所设之圜径一尺二寸求得圜面积一尺一十三寸零九分七十三厘有余为三率求得四率一尺八十七寸零六分一十四厘有余即圜外切三等边形之面积也
设如圜径一尺二寸求外切四等边形之每一边及
面积几何
法因圜径一尺二寸即外切四等边形之毎一边自乘得一尺四十四寸即圜外切四等边形之面积故他法皆不设止存一题以备体焉
设如圜径一尺二寸求外切五等边形之毎一边及
面积几何
法以圜径一尺二寸折半得半径六寸为首率用连比例三率有首率求中率之法求得中率三寸七分零八豪二丝有余倍之得七寸四分一厘六豪四丝有余为自圜心至外切五等边形各角之分角线乃以分角线为圜之半径为股求得勾四寸三分五厘九豪二丝四忽有余倍之得八寸七分一厘八豪四丝八忽有余为圜外切五等边形之每一边爰以每一边之八寸七分一厘八豪四丝八忽有余与半径六寸相乘得五十二寸三十一分零八厘有余折半得二十六寸一十五分五十四厘有余五因之得一尺三十寸七十七分七十二厘有余即圜外切五等边形之面积也如图甲乙圜径一尺二寸外切丙丁戊己庚五等边形以辛乙半径为首率【即理分中末线之全分】则自圜心至角之辛己分角线为倍中率【即倍理分中末线之大分】何以知之试自丙角至戊己二角作丙戊丙己两角相对斜线成丙戊己三角形复自戊角至庚角作戊庚两角相对斜线截丙己斜线于壬又成戊己壬三角形与丙戊己三角形为同式形【戊己壬三角形之戊角当巳庚边与戊巳边等故戊己壬三角形之戊角与丙戊己三角形之丙角等又同用一巳角则其余一角亦必等故为同式形】而丙戊为首率【即理分中末线之全分】戊己为中率【即理分中末线之大分】己壬为末率【即理分中末线之小分】丙壬亦与戊己等为中率乃自壬至丙戊线作壬癸垂线平分丙戊边于癸遂成丙癸壬勾股形与辛乙己勾股形为同式形【辛乙己勾股形之辛角当乙己边为戊己边之半故辛乙巳勾股之辛角与丙癸壬勾股之丙角等癸角与乙角又同为直角则其余一角亦必等故为同式形】夫丙戊既为首率丙壬既为中率若以丙戊之半丙癸为首率则丙壬之半丙子亦为中率而丙壬即为倍中率丙癸壬勾股形与辛乙巳勾股形既为同式形则辛乙己勾股形之辛乙股与辛己之比必同于丙癸壬勾股形之丙癸股与丙壬之比是以辛乙半径为首率则辛己分角线亦即为倍中率也既得辛己分角线乃以辛己分角线为辛乙半径为股求得乙己勾倍之得戊己即圜外切五等边形之毎一边也又自圜心至各角作分角线即分五等边形为五三角形其辛乙中垂线即圜之半径故以所得圜外切五等边形之每一边与半径相乘折半得辛戊巳一三角形之面积五倍之而得圜外切五等边形之总面积也
又法以全圜三百六十度五分之每分得七十二度折半得三十六度乃以半径十万为一率三十六度之正切七万二千六百五十四为二率今所设之半径六寸为三率求得四率四寸三分五厘九豪二丝四忽倍之得八寸七分一厘八豪四丝八忽为圜外切五等边形之毎一边既得五等边形之毎一边乃以半径与毎一边之数相乘折半五因之得一尺三十寸七十七分七十二厘为圜外切五等边形之面积也如图甲乙圜径一尺二寸外切丙丁戊巳庚五等边形每一边之弧皆七十二度试将丙丁边折半于辛自圜心壬作壬辛半径线又作壬丙分角线割圜界于甲则甲辛弧为三十六度丙辛即三十六度之正切丙丁即三十六度正切之倍是故半径十万与三十六度之正切之比即如所设之半径六寸与丙辛之半边之比既得半边倍之即全边也
又用求圜外各形之一边之定率比例以定率之圜径一○○○○○○○○为一率圜外切五等边形之每一边七二六五四二五二为二率今所设之圜径一尺二寸为三率求得四率八寸七分一厘八豪五丝一忽有余即圜外切五等边形之每一边也
又用求圜外各形之面积之定率比例以定率之圜径自乘之正方面积一○○○○○○○○为一率圜外切五等边形之面积九○八一七八一六为二率今所设之圜径一尺二寸自乘得一尺四十四寸为三率求得四率一尺三十寸七十七分七十六厘有余即圜外切五等边形之面积也
又用圜面积之定率比例以定率之圜面积一○○○○○○○○为一率圜外切五等边形之面积一一五六三二八三四为二率今所设之圜径一尺二寸求得圜面积一尺一十三寸零九分七十三厘有余为三率求得四率一尺三十寸七十七分七十六厘即圜外切五等边形之面积也
设如圜径一尺二寸求外切六等边形之每一边及面积几何
法以圜径一尺二寸折半得半径六寸自乘得三十六寸三归四因得四十八寸开方得六寸九分二厘八豪二丝有余即圜外切六等边形之毎一边乃以毎一边之六寸九分二厘八豪二丝有余与半径六寸相乘得四十一寸五十六分九十二厘有余折半得二十寸七十八分四十六厘有余六因之得一尺二十四寸七十分七十六厘有余即圜外切六等边形之面积也如图甲乙圜径一尺二寸外切丙丁戊巳庚辛六等边形试自圜心至各角作分角线即分六等边形为六三角形其壬乙半径即每一三角形之中垂线而中垂线自乘之方为每边自乘之方之四分之三故以半径自乘三归四因开方即得圜外切六等边形之每一边也既得毎一边与半径相乘折半得壬戊己一三角形之面积六倍之而得圜外切六等边形之总面积也
又法以全圜三百六十度六分之毎分得六十度折半得三十度乃以半径十万为一率三十度之正切五万七千七百三十五为二率今所设之半径六寸为三率求得四率三寸四分六厘四豪一丝倍之得六寸九分二厘八豪二丝为圜外切六等边形之毎一边既得六等边形之毎一边乃以半径与毎一边之数相乘折半六因之得一尺二十四寸七十分七十六厘为圜外切六等边形之面积也如图甲乙圜径一尺二寸外切丙丁戊己庚辛六等边形毎一边之弧皆六十度试将丙丁边折半于壬自圜心癸作癸壬半径线又作癸丙分角线割圜界于子则子壬弧为三十度丙壬即三十度之正切丙丁即三十度正切之倍是故半径十万与三十度之正切之比即如所设之半径六寸与丙壬之半边之比既得半边倍之即全边也
又用求圜外各形之一边之定率比例以定率之圜径一○○○○○○○○为一率圜外切六等边形之每一边五七七三五○二七为二率今所设之圜径一尺二寸为三率求得四率六寸九分二厘八豪二丝有余即圜外切六等边形之毎一边也
又用求圜外各形之面积之定率比例以定率之圜径自乘之正方面积一○○○○○○○○为一率圜外切六等边形之面积八六六○二五四○为二率今所设之圜径一尺二寸自乘得一尺四十四寸为三率求得四率一尺二十四寸七十分七十六厘有余即圜外切六等边形之面积也
又用圜面积之定率比例以定率之圜面积一○○○○○○○○为一率圜外切六等边形之面积一一○二六五七八一为二率今所设之圜径一尺二寸求得圜面积一尺一十三寸零九分七十三厘有余为三率求得四率一尺
【打 印】 【来源:读书之家-dushuzhijia.com】