用圜径求各等边形之一边为相当弧之通以为立表之原故谓之宗然六者实本于三如六边形之一边即圜之半径不借他求数无零余而理最易见此其一也四边形之一边则为半径所作正方形之对角斜此又其一也十边形之一边则为半径所作连比例三率之中率西法谓之理分中末线此又其一也至于三边形则出于六边五边形则出于十边十五边形则又出于三边及五边非别自立一法也既得此六种形之一边各半之即得六种弧之各正爰命此六种弧为本弧按法可求本弧之余可求倍本弧之正余亦可求半本弧之正余是为三要又以不等两弧之正余求相加相减弧之正又两弧距六十度前后之度等得其两正之较即得距弧之正是又名为二简法由此错综之可得正一百二十其中最小者为四十五分之其次一度三十分又次为二度十五分又次为三度如此每越四十五分而得一其自一分至四十四分之则以比例求之因弧分甚微与直线所差无几故以求而得之此西法立割圜八线表之大纲也尔来西法对数表内有设连比例四率以求圜内容七边九边二法因推广其理于六宗之外增求圜内容十八边形十四边形之法俱以半径为首率求连比例四率之第二率即十八边形十四边形之每一边而七邉又因之以生亦犹三边之出于六边五边之出于十边也有此二形与六宗相叅伍可得正三百六十其中最小者为十五分之正又增一法求十五分之三分之一五分之正所少者止一分至四分之正较之四十五分为尤密可知矣今以六宗三要二简法理分中末线并新增数法皆按类具例于左
六宗【圜内容六边形四边形三边形十边形五边形十五边形】
设如圜径二十万求内容六边形之一边几何法以圜径二十万折半得半径十万即圜内容六边形之每一边也如甲圜内容六边形每边之弧得圜周六分之一皆六十度试自圜心甲至圜界乙丙二处作甲乙甲丙二半径线成甲乙丙三角形则甲角所对之弧为六十度而甲乙甲丙两腰俱为半径既相等则乙角丙角亦必相等而各为六十度矣三角既等则三边亦必相等故乙丙边即与甲乙甲丙半径相等也乙丙弧既为六十度则乙丙边十万为六十度之通折半得乙丁五万即乙戊弧三十度之正也此即六边起算之理前设圜径为二兆者所以求其密合今设圜径为二十万所以取其便于用也
设如圜径二十万求内容三边形之一边几何法以圜径二十万为自乗得四百亿又以半径十万为勾自乗得一百亿相减余三百亿开方得股一十七万三千二百零五【小余○八○七五六八】即圜内容三边形之每一边也如甲圜内容三边形毎边之弧得圜周三分之一皆一百二十度为六边形每边弧之一倍试自乙角过圜心至对界作乙丁全径线又自丁依半径度至丙作丁丙线则成六边形之每一边其丙丁弧即为三边形之每边弧之一半而丙角立于圜界之一半必为直角故半径为勾全径为求得股即三边形之每一边也乙丙弧既为一百二十度则乙丙边一十七万三千二百零五【小余○八○七五六八】为一百二十度之通折半得乙戊八万六千六百零二【小余五四○三七八四】即乙己弧六十度之正也
设如圜径二十万求内容四边形之一边几何法以圜径二十万折半得半径十万自乗得一百亿倍之得二百亿开方得一十四万一千四百二十一【小余三五六二三七三】即圜内容四边形之每一边也如甲圜内容四边形每边之弧得圜周四分之一皆九十度试自圜心甲至圜界乙丙二处作甲乙甲丙二半径线成甲乙丙勾股形若命甲乙半径为股则甲丙半径为勾若命甲丙半径为股则甲乙半径为勾因勾股皆为半径故以半径自乗倍之开方而得即如勾股各自乗并之开方而得也乙丙弧既为九十度则乙丙边一十四万一千四百二十一【小余三五六二三七三】为九十度之通折半得乙丁七万零七百一十【小余六七八一一八六】即乙戊弧四十五度之正也
理分中末线【此西法名也因命一线为首率将此首率分为大小两分大分为中率小分为末率与原线共为相连比例三率故谓之理分中末线也】
设如以十万为首率作相连比例三率使中率末率相加与首率等求中率末率各几何
法以十万自乗得一百亿为长方积以十万为长阔之较用带纵较数开方法算之得阔六万一千八百零二即相连比例之中率以中率与首率十万相减余三万八千一百九十七即相连比例之末率也此法葢因连比例三率之首率末率相乗之长方积与中率自乗之正方积等而首率之中有一中率一末率之数故首率自乗之一正方积中有首率中率相乗之一长方又有首率末率相乗之一长方即如甲乙为首率丙乙为中率甲丙为末率丙乙中率自乗之正方为丁戊乙丙甲丙末率与甲乙首率相乗之长方为甲丙庚辛【甲辛与甲乙等】此一正方一长方之积等而甲乙首率自乗之正方为甲乙己辛丙乙中率与甲乙首率相乗之长方为丙乙己庚【丙庚与甲乙等】夫甲丙庚辛之长方既与丁戊乙丙之正方等则甲乙己辛之正方亦必与丁戊己庚之长方等是以丁戊己庚长方形之阔即中率其长比阔之较即首率故以首率自乗为长方积仍以首率为长比阔之较用带纵平方法开之得阔为中率也
又法以首率十万为股首率十万折半得五万为勾求得一十一万一千八百零三内减勾五万余六万一千八百零三为相连比例之中率以中率与首率相减余三万八千一百九十七即为相连比例之末率也如图甲乙与乙丙皆为首率今以甲乙为股乙丙折半得乙丁为勾求得甲丁试依甲丁度将乙丁勾引长至戊作丁乙戊线仍自甲至戊作一圜界则甲丁戊丁同为半径且皆为于戊丁内减乙丁勾所余乙戊与己乙等即中率于甲乙首率内减去与乙戊相等之己乙中率所余甲己即末率也此法与前法理实相同带纵较数开方法有以半较自乗与原积相加开方得半和于半和内减半较得阔者今此法以首率为股自乘得甲乙丙壬正方形即与庚戊丙辛长方形积等乙丙即长阔之较乙丁即半较戊丁即半和今以乙丁为勾自乘甲乙为股自乘相加开方得甲丁即如乙丁半较自乘与甲乙自乘原积相加开方而得甲丁与戊丁等戊丁内减乙丁余戊乙即半和内减半较得阔为中率也
设如圜径二十万求内容十边形之一边几何法用连比例三率有首率求中率末率使中率末率相加与首率等之法以圜径二十万折半得十万为首率自乘得一百亿为长方积以十万为长阔之较用带纵较数开方法算之得六万一千八百零三【小余三九八八七四九】为连比例之中率即圜内容十边形之每一边也如甲圜内容十边形每边之弧得圜周十分之一皆三十六度其通即圜内十边形之一边试自圜心甲至圜界乙丙二处作甲乙甲丙二半径线遂成甲乙丙三角形复自圜界乙至圜界戊作一乙戊线则截甲丙线于丁又成乙丙丁三角形而乙戊遂为一百零八度之通此乙丙丁三角形与甲乙丙三角形为同式形【乙丙丁三角形之乙角当戊丙弧为乙丙弧之倍则乙丙丁三角形之乙角与甲乙丙三角形之甲角等又同用丙角其余一角亦必等故为同式形】其相当各边俱成相连比例故甲乙与乙丙之比同于乙丙与丙丁之比为相连比例三率而甲乙为首率乙丙为中率丙丁为末率也又甲乙丙三角形其甲角既居全圜十分之一为三十六度则乙角必比甲角大一倍为七十二度【三角形之三角共一百八十度甲角既为三十六度则乙丙两角必为一百四十四度平分之各得七十二度比甲角为大一倍也】而乙丙丁三角形之乙角与甲乙丙三角形之甲角等则甲丁乙三角形之乙角亦必与甲角等是则甲丁乙三角形必两边相等之三角形而乙丙丁三角形亦为两边相等之三角形也夫甲丁既与丁乙等而丁乙又与乙丙中率等则甲丁亦必与中率等矣是以甲丁中率与丁丙末率相加与甲丙首率等故用连比例三率有首率求中率法算之得中率为十边形之一边也
又法以圜径二十万折半得半径十万为股自乘得一百亿又以半径十万折半得五万为勾自乗得二十五亿相加得一百二十五亿开方得一十一万一千八百零三【小余三九八八七四九】于数内减去勾数余六万一千八百零三【小余三九八八七四九】即圜内容十边形之每一边也如甲圜内容十边形每边之弧得圜周十分之一皆三十六度试自圜心甲至圜界乙作甲乙半径线为股又自圜心甲取直角作甲丙半径线折半得甲丁为勾求得乙丁内减与甲丁相等之戊丁余乙戊即与乙己等为圜内容十边形之毎一边也乙己弧既为三十六度则乙己边六万一千八百零三【小余三九八八七四九】为三十六度之通折半得乙庚三万零九百零一【小余六九九四三七四】即乙辛弧十八度之正也
设如圜径二十万求内容五边形之一边几何法以半径十万为底仍以半径十万与圜内容十边形之一边六万一千八百零三【小余三九八八七四九】为两腰用三角形求中垂线法算之得中垂线五万八千七百七十八【小余五二五二二九二】倍之得一十一万七千五百五十七【小余○五○四五八四】即圜内容五边形之每一边也如甲圜内容五边形每边之弧得圜周五分之一皆七十二度试自圜心甲至圜界乙丙二处作甲乙甲丙二半径线遂成甲乙丙三角形其乙丙边为七十二度之通如以乙丙弧七十二度折半于丁作乙丁线即圜内容十边形之一边仍自圜心甲至圜界丁作甲丁半径线又成甲乙丁三角形而甲丁线平分乙丙线于戊此乙戊线为甲乙丁三角形之中垂线即五边形每边之一半故以甲丁半径为底甲乙半径为大腰乙丁十边形之一边为小腰求得乙戊中垂线倍之为五边形之毎一边也
又法以半径十万为股自乘得一百亿圜内容十边形之一边六万一千八百零三【小余三九八八七四九】为勾自乘得三十八亿一千九百六十六万零一百一十二【小余四八九九九○五八五八五○○一】相加得一百三十八亿一千九百六十六万零一百一十二【小余四八九九九○五八五八五○○一】开方得一十一万七千五百五十七【小余○五○四五八四】即圜内容五边形之每一边也此法葢因半径自乘十边形之一边自乘两自乘方积相并即与五边形之一边自乘之方积等故用勾股求之法算之如甲圜内容五边形将乙丙弧折半于丁作乙丁线即圜内容十边形之一边仍自圜心甲至丁作甲丁半径线遂成甲乙丁三角形又依乙丁线度截甲丁半径于己作乙己线成乙己丁三角形与甲乙丁三角形为同式形故甲乙为首率乙丁为中率己丁为末率甲己亦与乙丁等为中率而乙丙边平分己丁末率于戊又成乙戊丁勾股形乙戊五边形每边之半为股丁戊末率之半为勾乙丁中率为试依甲丁半径度作甲庚辛丁正方形又依乙丙五边形之一边度作乙丙癸壬正方形其甲庚辛丁正方形内甲子丑已为乙丁自乘之一正方【甲已既与乙丁等故甲子丑已为自乘之正方】已寅辛丁长方形亦与乙丁自乘之一正方等【丁辛原与甲丁首率等己丁末率与丁辛首率相乘自与乙丁中率自乘之正方等】而子庚寅丑长方形为乙丁自乘之一正方内少勾自乘之四正方【葢子庚辛夘长方形为首率与末率相乘之长方与乙丁中率自乘之正方等内却少丑寅辛夘正方形而丑寅辛夘正方形实为戊丁勾自乘之四正方故子庚寅丑长方形为乙丁自乘之一正方少勾自乘之四正方也】是则甲丁半径自乘之甲庚辛丁正方形内有自乘之三正方而少勾自乘之四正方再加乙丁自乘之一正方共得自乘之四正方而少勾自乘之四正方大凡自乘之正方内原有勾自乘之一正方股自乘之一正方今自乘之四正方内少勾自乘之四正方即与股自乘之四正方等而乙丙一边自乘之乙丙癸壬正方形实为乙戊股自乘之四正方然则甲丁半径自乘方与乙丁十边形之一边自乘方相并既与乙戊股自乘之四正方等而乙丙一边自乘之正方岂不与甲丁半径自乘乙丁十边形之一边自乘之两正方等乎故以甲丁半径为股乙丁十边形之一边为勾求得而为五边形之一边也又法以半径十万自乘得一百亿为长方积仍以半径十万为长阔之较用带
纵较数开方 【折半得八万】法算之得长一十六万一【小余三九八八七四九】千八百零三零九百零一【小余六九九四三七四】为自圜心至五边形每边之垂线乃以半径十万为圜心至五边形每边之垂线为股求得勾五万八千七百七十八【小余五二五二二九二】倍之得一十一万七千五百五十七【小余○五○四五八四】即圜内容五边形之每一边也如甲圜内容五边形将乙丙弧折半于丁作乙丁线即圜内容十边形之一边仍自圜心甲至丁作甲丁半径线成甲乙丁三角形又依乙丁线度截甲丁半径于己作乙己线成乙己丁三角形与甲乙丁三角形为同式形故甲乙为首率乙丁为中率己丁为末率甲己亦与乙丁等为中率而乙丙边平分己丁末率于戊是以己戊与戊丁俱为半末率而甲戊自圜心至边之垂线则为一中率半末率之共数今以半径首率自乘为长
【打 印】 【来源:读书之家-dushuzhijia.com】