六豪零九忽有余为十等边形之中心至每边正中之垂线或以十八度之正三万零九百零二为一率十八度之余九万五千一百零六为二率今所设之十等边形之每边之半六寸为三率求得四率一尺八寸四分六厘五豪九丝八忽有余为十等边形之中心至每边正中之垂线既得此垂线乃与每边折半之数相乗得一尺一十寸七十九分五十八厘有余十因之得一十一尺零七寸九十五分八十厘有余即十等边形之面积也如图甲乙丙丁戊己庚辛壬癸十等边形试作一外切圜形则每边之弧皆为三十六度将甲乙边折半于子自圜心丑作丑子寅半径线遂平分甲乙弧于寅则甲寅弧为十八度甲子即十八度之正丑子即十八度之余是故十八度之正与半径十万之比即如今所设之每边之半甲子与所得之半径甲丑之比又十八度之正与十八度之余之比即如今所设之每边之半甲子与所得之垂线丑子之比也【此即圜内容十等边形之法而转用之也】又法以十八度之正切三万二千四百九十二为一率半径十万为二率今所设之十等边形之每边之半六寸为三率求得四率一尺八寸四分六厘六豪零八忽有余为十等边形内容圜之半径或用求圜外切十等边形之一边之定率比例以定率之圜外切十等边形之每边三二四九一九七○为一率圜径一○○○○○○○○为二率今所设之十等边形之每边一尺二寸为三率求得四率三尺六寸九分三厘二豪二丝有余折半得一尺八寸四分六厘六豪一丝有余为十等边形内容圜之半径即十等边形之中心至每边正中之垂线乃与每边折半之数相乗十因之得一十一尺零七寸九十六分六十厘有余为十等边形之面积也如图甲乙丙丁戊己庚辛壬癸十等边形试作一内容圜形自中心子至每边之正中作子丑垂线遂平分戊巳边于丑则戊丑即十八度之正切故以十八度之正切与半径十万之比同于今所设之毎边之半戊丑与所得之内容圜半径子丑之比也【此即圜外切十等边形之法而转用之也】
又法用连比例三率有中率求末率之法以每边一尺二寸为中率求得末率七寸四分一厘六豪四丝有余【中率求末率即如首率求中率也】乃以末率与中率相加得一尺九寸四分一厘六豪四丝有余为首率即十等边形之分角线【即十等边形外切圜之半径】乃以分角线为每边之半为勾求得股一尺八寸四分六厘六豪零九忽有余为十等边形自中心至每边正中之垂线【即十等边形内容圜之半径】乃以此垂线与每边之半相乗十因之得一十一尺零七寸九十六分五十四厘有余即十等边形之面积也如图甲乙丙丁戊己庚辛壬癸十等边形子为十等边形之中心试自中心子至戊巳二角作子戊子巳二线成子戊已三角形又自已角至丙角作巳丙线截子戊线于丑则又成巳丑戊三角形与子戊巳三角形为同式形故子戊线为首率【即理分中末线之全分】戊已边为中率【即理分中末线之大分】而所截之子丑一段与戊巳边等亦为中率丑戊一段即为末率【即理分中末线之小分】其比例为子戊首率与戊巳中率之比即同于戊已中率与丑戊末率之比故按连比例三率有中率求末率之法求得丑戊末率与子丑中率相加即得子戊首率为分角线又为十等边形外切圜之半径以子戊为戊巳边之半戊寅为勾求得子寅股即十等边形中心子至每边正中之垂线又为十等边形内容圜之半径既得子寅垂线与戊已边之半戊寅相乗得子戊巳一三角形之面积十因之即十等边形之面积也
又法用边线相等面积不同之定率比例以定率之正方面积一○○○○○○○○为一率十等边形面积七六九四二○八八三为二率今所设之十等边形之每边一尺二寸自乗得一尺四十四寸为三率求得四率一十一尺零七寸九十六分六十厘有余即十等边形之面积也葢十等边形之每一边为一○○○○则其自乗之正方面积为一○○○○○○○○而十等边形之每一边一○○○○所得之十等边形面积为七六九四二○八八三故以子丑寅卯辰巳午未申酉十等边形之辰巳一边一○○○○自乗之辰巳戌亥正方面积一○○○○○○○○与子丑寅卯辰已午未申酉十等边形面积七六九四二○八八三之比即同于今所设之甲乙丙丁戊己庚辛壬癸十等边形之每一边一尺二寸自乗之戊己干坎正方面积一尺四十四寸与今所得之甲乙丙丁戊己庚辛壬癸十等边形面积一十一尺零七寸九十六分六十厘有余之比也
又法用面积相等边线不同之定率比例以定率之十等边形之每边三六○五一○五八为一率正方形之每边一○○○○○○○○为二率今所设之十等边形之每边一尺二寸为三率求得四率三尺三寸二分八厘六豪一丝二忽有余为十等边形面积相等之正方形每边之数自乗得一十一尺零七寸九十六分五十七厘有余即十等边形之面积也葢十等边形之每边为三六○五一○五八正方形之每边为一○○○○○○○○则两面积相等故以子丑寅卯辰巳午未申酉十等边形之辰巳一边三六○五一○五八与戌亥金木正方形之亥金一边一○○○○○○○○之比即同于今所设之甲乙丙丁戊己庚辛壬癸十等边形之戊巳一边一尺二寸与今所得之干坎艮震正方形之坎艮一边三尺三寸二分八厘六豪一丝二忽有余之比既得坎艮一边自乗得干坎艮震正方面积即与甲乙丙丁戊己庚辛壬癸十等边形之面积为相等也
如有十等边形之面积一十一尺零七寸九十六分六十厘求每边之数则用边线相等面积不同之定率比例以定率之十等边形
【打 印】 【来源:读书之家-dushuzhijia.com】