御制数理精蕴 - 第2部分

作者:【暂缺】 【297,284】字 目 录

五十尺书于方积八千尺之上而以五十自乗再乗之一十二万五千尺书于原积一十四万八千之下相减余二万三千尺乃合第二位积八百七十七尺共二万三千八百七十七尺为次商廉隅之共积而以初商五十尺自乗得二千五百尺三因之得七千五百尺为次商三方廉面积即以三方廉面积除方积二万三千八百七十七尺足三尺即定次商为三尺书于方积七尺之上合初商共得五十三尺自乗再乗得一十四万八千八百七十七尺与原积符合相减恰尽即定立方边为五十三尺也此法亦止用三方廉面积除立方体积得次商数即并初商数自乗再乗以减原积也

设如正方体积一丈八百六十尺八百六十七寸开立方问每一边数几何

法列正方体积一丈八百六十尺八百六十七寸自末位起算每方积三位定方边一位故隔二位作记即于七寸上定寸位空尺上定尺位一丈上定丈位其一丈为初商积与一丈自乗再乗之数相合即定初商为一丈书于方积一丈之上而以一丈自乗再乗之一丈书于初商积之下相减恰尽爰以方边第二位余积八百六十尺续书于下为次商廉隅之共积乃以初商之一丈作一十尺自乗得一百尺三因之得三百尺为次商三方廉面积以除八百六十尺足二尺即定次商为二尺书于方积空尺之上而以初商之一十尺与次商之二尺相乗得二十尺三因之得六十尺为次商三长廉面积复以次商之二尺自乗得四尺为次商一小隅面积合三方廉三长廉一小隅面积共得三百六十四尺为次商廉隅共法书于余积之左以次商之二尺乗之得七百二十八尺与次商廉隅共积相减余一百三十二尺即一十三万二千寸复以方边第三位余积八百六十七寸续书于下共一十三万二千八百六十七寸为三商廉隅之共积乃以初商次商之一丈二尺作一百二十寸自乗得一万四千四百寸三因之得四万三千二百寸为三商三方廉面积以除一十三万二千八百六十七寸足三寸即定三商为三寸书于方积七寸之上而以初商次商之一百二十寸与三商之三寸相乗得三百六十寸三因之得一千零八十寸为三商三长廉面积复以三商之三寸自乗得九寸为三商一小隅面积合三方廉三长廉一小隅面积共得四万四千二百八十九寸为三商廉隅共法书于余积之左以三商之三寸乗之得一十三万二千八百六十七寸与三商廉隅共积相减恰尽是开得一丈二尺三寸为正方体积每一边之数也

设如正方体积九千四百八十一万八千八百一十六尺立方问每一边数几何

法列正方体积九千四百八十一万八千八百一十六尺自末位起算每方积三位定方边一位故隔二位作记乃于六尺上定单位八千尺上定十位四百万尺上定百位其九千四百万尺为初商积以初商本位计之则四百万尺为初商积之单位而九千四百万尺为九十四止与四自乗再乗之数相准即定初商为四书于方积四百万尺之上而以四自乗再乗之六十四书于初商积之下相减余三千万尺爰以方边第二位余积八十一万八千尺续书于下共三十零八十一万八千尺为次商廉隅之共积以次商本位计之则八千尺为次商积之单位而三千零八十一万八千尺为三万零八百一十八而初商之四即为四十乃以初商之四十自乗得一千六百三因之得四千八百为次商三方廉面积以除三万零八百一十八足五倍即定次商为五书于方积八千尺之上而以初商之四十与次商之五相乗得二百三因之得六百为次商三长廉面积复以次商之五自乗得二十五为次商一小隅面积合三方廉三长廉一小隅面积共得五千四百二十五为次商廉隅共法书于余积之左以次商之五乗之得二万七千一百二十五与次商廉隅共积相减余三百六十九万三千尺复以方边末位余积八百一十六尺续书于下共三百六十九万三千八百一十六尺为三商廉隅之共积以三商本位计之则积与边皆仍为本位乃以初商次商之四百五十尺自乗得二十万零二千五百三因之得六十万零七千五百为三商三方廉面积以除三百六十九万三千八百一十六尺足六倍即定三商为六书于方积六尺之上而以初商次商之四百五十与三商之六相乗得二千七百三因之得八千一百为三商三长廉面积复以三商之六自乗得三十六为三商一小隅面积合三方廉三长廉一小隅面积共得六十一万五千六百三十六为三商廉隅共法书于余积之左以三商之六乗之得三百六十九万三千八百一十六与三商廉隅共积相减恰尽是得四百五十六尺为正方体积毎一边之数也

设如正方体积三百四十七丈四百二十八尺九百二十七寸开立方问每一边数几何

法列正方体积三百四十七丈四百二十八尺九百二十七寸自末位起算毎隔二位作记即于七寸上定寸位八尺上定尺位七丈上定丈位其三百四十七丈为初商积与七丈自乗再乗之数相准即定初商为七丈书于方积七丈之上而以七丈自乗再乗之三百四十三丈书于初商积之下相减余四丈即四千尺爰以方边第二位余积四百二十八尺续书于下共四千四百二十八尺为次商廉隅之共积乃以初商之七丈作七十尺自乗得四千九百尺三因之得一万四千七百尺为次商三方廉面积以除方积四千四百二十八尺其数不足是次商为空位也乃书一空于方积八尺之上以存次商之位复以方边末位余积九百二十七寸续书于下共四千四百二十八尺九百二十七寸即四百四十二万八千九百二十七寸为三商廉隅之共积仍以次商三方廉面积一万四千七百尺作一百四十七万寸为廉法以除四百四十二万八千九百二十七寸足三寸即定三商为三寸书于方积七寸之上又以初商之七丈为七百寸与三商之三寸相乗得二千一百寸三因之得六千三百寸为三商三长廉面积复以三商之三寸自乗得九寸为三商一小隅面积合三方廉三长廉一小隅面积共得一百四十七万六千三百零九寸为三商廉隅共法书于余积之左以三商之三寸乗之得四百四十二万八千九百二十七寸与三商廉隅共积相减恰尽是开得七丈零三寸为正方体积毎一边之数也此法商出之方边有空位凡廉法除余积而数不足者皆依此例推之

设如正方体积三千九百三十万四千尺开立方问每一边数几何

法列正方体积三千九百三十万四千尺补三空位以足其分自末空位起算每隔二位作记乃于空尺上定单位四千尺上定十位九百万尺上定百位其三千九百万尺为初商积以初商本位计之则九百万尺为初商积之单位而三千九百为三十九止与三自乗再乗之数相准即定初商为三书于方积九百万尺之上而以三自乗再乗之二十七书于初商积之下相减余一千二百万尺爰以方边第二位余积三十万四千尺续书于下共一千二百三十万四千尺为次商廉隅之共积以次商本位计之则四千尺为次商积之单位而一千二百三十万四千尺为一万二千三百零四而初商之三即为三十乃以初商之三十自乗得九百三因之得二千七百为次商三方廉面积以除余积一万二千三百零四足四倍即定次商为四书于方积四千尺之上又以初商之三十与次商之四相乗得一百二十三因之得三百六十为次商三长廉面积复以次商之四自乗得一十六为次商一小隅面积合三方廉三长廉一小隅面积共得三千零七十六为次商廉隅共法书于余积之左以次商之四乗之得一万二千三百零四与余积相减恰尽是开得三百四十尺为正方体积每一边之数也此法方积之末有三空位故所得方边之末亦补一空位凡设数未至单位者皆依此例补足位分然后开之

设如正方体积一丈八百七十九尺零八十寸九百零四分开立方问每一边数几何

法列正方体积一丈八百七十九尺零八十寸九百零四分自末位起算毎隔二位作记于四分上定分位空寸上定寸位九尺上定尺位一丈上定丈位其一丈为初商积与一丈自乗再乗之数相合即定初商为一丈书于方积一丈之上而以一丈自乗再乗之一丈书于初商积之下相减恰尽爰以方边第二位余积八百七十九尺续书于下为次商廉隅之共积乃以初商之一丈作一十尺自乗得一百尺三因之得三百尺为次商三方廉面积以除八百七十九尺足二尺即定次商为二尺书于方积九尺之上而以初商之一十尺与次商之二尺相乗得二十尺三因之得六十尺为次商三长廉而积复以次商之二尺自乗得四尺为次商一小隅面积合三方廉三长廉一小隅面积共得三百六十四尺为次商廉隅共法书于余积之左以次商之二尺乗之得七百二十八尺与余积相减仍余一百五十一尺即一十五万一千寸又以方边第三位余积八十寸续书于下共一十五万一千零八十寸为三商廉隅之共积乃以初商次商之一丈二尺作一百二十寸自乗得一万四千四百寸三因之得四万三千二百寸为三商三方廉面积以除一十五万一千零八十寸足三寸即定三商为三寸书于方积空寸之上而以初商次商之一百二十寸与三商之三寸相乗得三百六十寸三因之得一千零八十寸为三商三长廉面积复以三商之三寸自乗得九寸为三商一小隅面积合三方廉三长廉一小隅面积共得四万四千二百八十九寸为三商廉隅共法书于余积之左以三商之三寸乗之得一十三万二千八百六十七寸与余积相减仍余一万八千二百一十三寸即一千八百二十一万三千分又以方边第四位余积九百零四分续书于下共一千八百二十一万三千九百零四分为四商廉隅之共积乃以初商次商三商之一百二十三寸作一千二百三十分自乗得一百五十一万二千九百分三因之得四百五十三万八千七百分为四商三方廉面积以除一千八百二十一万三千九百零四分足四分即定四商为四分书于方积四分之上而以初商次商三商之一千二百三十分与四商之四分相乗得四千九百二十分三因之得一万四千七百六十分为四商三长廉面积复以四商之四分自乗得一十六分为四商一小隅面积合三方廉三长廉一小隅面积共得四百五十五万三千四百七十六分为四商廉隅共法书于余积之左以四商之四分乗之得一千八百二十一万三千九百零四分与余积相减恰尽是开得一丈二尺三寸四分为正方体积每一边之数也

设如正方体积八十亿六千零一十五万零一百二十五尺开立方问毎一边数几何

法列正方体积八十亿六千零一十五万零一百二十五尺自末位起算每隔二位作记于五尺上定单位空千尺上定十位空百万尺上定百位八十亿尺上定千位其八十亿尺为初商积以初商本位计之则八十亿尺为初商积之单位而八十亿尺为八止与二自乗再乗之数相合即定初商为二书于方积八十亿尺之上而以二自乗再乗之八书于初商积之下相减恰尽爰以方边第二位余积六千万尺续书于下为次商廉隅之共积以次商本位计之则空百万尺为次商之单位而六千万尺为六十而初商之二即为二十故以初商之二十自乗得四百三因之得一千二百为次商三方廉面积以除六十其数不足是次商为空位乃书一空于方积空百万尺之上以存次商之位复以方边第三位余积一十五万尺续书于下共六千零一十五万尺为三商廉隅之共积以三商本位计之则空千尺为三商之单位而六千零一十五万尺为六万零一百五十而初商之二即为二百次商之空即为空十故以初商次商之二空作二百自乗得四万三因之得十二万为三商三方廉面积以除六万零一百五十其数仍不足是三商亦为空位乃再书一空于方积空千尺之上以存三商之位复以方边末位余积一百二十五尺续书于下共六千零一十五万零一百二十五尺为四商廉隅之共积以四商本位计之则积与边皆仍为本位乃以初商次商三商之二千空百空十自乗得四百万尺三因之得一千二百万尺为四商三方廉面积以除六千零一十五万零一百二十五尺足五尺即定四商为五尺书于方积五尺之上而以初商之二千尺与四商之五尺相乗得一万尺三因之得三万尺为四商三长廉面积复以四商之五尺自乗得二十五尺为四商一小隅面积合三方廉三长廉一小隅面积共得一千二百零三万零二十五尺为四商廉隅共法书于余积之左以四商之五尺乗之得六千零一十五万零一百二十五尺与余积相减恰尽是开得二千零五尺为正方体积每一边之数也此法商出之方边有二空位凡开立方遇此类者皆依此例推之

设如正方体积三十二亿九千四百六十四万六千二百七十二尺开立方问每一边数几何

法列正方体积三十二亿九千四百六十四万六千二百七十二尺自末位起算每隔二位作记于二尺上定单位六千尺上定十位四百万尺上定百位三十亿尺上定千位其三十亿尺为初商积以初商本位计之则三十亿尺为初商积之单位而三十亿尺为三止与一自乗再乗之数相准即定初商为一书于方积三十亿尺之上而以一自乗再乗之一书于初商积之下相减余二十亿尺爰以方边第二位余积二亿九千四百万尺续书于下共二十二亿九千四百万尺为次商廉隅之共积以次商本位计之则四百万尺为次商积之单位而二十二亿九千四百万尺为二千二百九十四而初商之一即为一十乃以初商之一十自乗得一百三因之得三百为次商三方廉面积以除二千二百九十四足七倍因定次商为七而以初商之一十

打 印】 【来源:读书之家-dushuzhijia.com】