次商之长十七尺再乗得二千四百四十八尺与原积相减恰尽即知立方之髙与阔俱十二尺其长为十七尺也
设如带一纵立方积一万九千零八寸其髙与阔相等长比髙阔多一百二十寸问髙阔长各几何法列积如开立方法商之其一万九千寸为初商积可商二十寸则以二十寸为髙与阔加纵多一百二十寸得一百四十寸为长即以髙与阔二十寸自乗得四百寸又以长一百四十寸再乘得五万六千寸大于原积二倍有余乃退商十寸书于原积九千寸之上而以所商十寸为初商之高与阔加纵多一百二十寸得一百三十寸为初商之长乃以初商之髙与阔十寸自乘得一百寸又以初商之长一百三十寸再乘得一万三千寸书于原积之下相减余六千零八寸为次商廉隅之共积乃以初商之髙与阔十寸自乘得一百寸又以初商之髙与阔十寸与初商之长一百三十寸相乘得一千三百寸倍之得二千六百寸两数相并得二千七百寸为次商三方廉面积以除次商廉隅之共积六千零八寸足二寸则以二寸书于原积八寸之上而以初商之髙与阔十寸倍之得二十寸又与初商之长一百三十寸相并得一百五十寸以次商之二寸乘之得三百寸为次商三长廉面积又以次商之二寸自乘得四寸为次商一小隅面积合三方廉三长廉一小隅面积共得三千零四寸为廉隅共法以次商之二寸乘之得六千零八寸书于余积之下相减恰尽是知立方之髙与阔俱十二寸加纵多一百二十寸得一百三十二寸即立方之长也此法因带纵甚大按立方例所得初商数并加纵多所得初商积必大于原积防倍依次渐取小数开之又至甚烦故约略其分退商之至商出之积比原积微小而后可是则带纵立方立法之最难者也
设如带一纵立方积二丈零四十二尺四百一十五寸其髙与阔相等长比髙阔多一尺二寸问髙阔长各防何
法列积如开立方法商之其二丈为初商积可商一丈乃以一丈书于原积二丈之上而以所商一丈为初商之高与阔加纵多一尺二寸得一丈一尺二寸为初商之长即以初商之高与阔一丈自乘仍得一丈又以初商之长一丈一尺二寸再乘得一丈一百二十尺书于原积之下相减余九百二十二尺四百一十五寸为次商廉隅之共积乃以初商之高与阔一丈作一十尺自乘得一百尺又以初商之长一丈一尺二寸作一十一尺二寸与初商之高与阔一十尺相乘得一百一十二尺倍之得二百二十四尺两数相并得三百二十四尺为次商三方廉面积以除次商廉隅之共积九百二十二尺足二尺则以二尺书于原积二尺之上而以初商之高与阔一十尺倍之得二十尺与初商之长一十一尺二寸相并得三十一尺二寸以次商之二尺乘之得六十二尺四十寸为次商三长廉面积又以次商之二尺自乘得四尺为次商一小隅面积合三方廉三长廉一小隅面积共得三百九十尺四十寸为廉隅共法以次商之二尺乘之得七百八十尺八百寸书于余积之下相减仍余一百四十一尺六百一十五寸即一十四万一千六百一十五寸为三商廉隅之共积其初商次商所得之一丈二尺为高与阔加纵多一尺二寸得一丈三尺二寸为长乃以初商次商之高与阔一丈二尺作一百二十寸自乘得一万四千四百寸又以初商次商之长一丈三尺二寸作一百三十二寸与初商次商之高与阔一百二十寸相乘得一万五千八百四十寸倍之得三万一千六百八十寸两数相并得四万六千零八十寸为三商三方廉面积以除三商廉隅之共积一十四万一千六百一十五寸足三寸则以三寸书于原积五寸之上而以初商次商之髙与阔一百二十寸倍之得二百四十寸与长一百三十二寸相并得三百七十二寸以三商之三寸乘之得一千一百一十六寸为三商三长廉面积又以三商之三寸自乘得九寸为三商一小隅面积合三方廉三长廉一小隅面积共得四万七千二百零五寸为防隅共法以三商之三寸乘之得一十四万一千六百一十五寸书于余积之下相减恰尽是知立方之高与阔俱一丈二尺三寸加纵多一尺二寸俱一丈三尺五寸即立方之长也
又法以初商积二丈商一丈书于原积二丈之上而以所商一丈为初商之高与阔加纵多一尺二寸得一丈一尺二寸为初商之长即以初商之高与阔一丈自乘仍得一丈又以初商之长一丈一尺二寸再乘得一丈一百二十尺书于原积之下相减余九百二十二尺四百一十五寸为次商积乃以初商之高与阔一丈作一十尺自乘得一百尺又以初商之长一丈一尺二寸作一十一尺二寸与初商之高与阔一十尺相乘得一百一十二尺倍之得二百二十四尺两数相并得三百二十四尺为次商三方廉面积以除次商积九百二十二尺四百一十五寸足二尺则以二尺书于原积二尺之上合初商次商共一丈二尺为初商次商之高与阔加纵多一尺二寸得一丈三尺二寸为初商次商之长乃以初商次商之髙与阔一丈二尺自乘得一丈四十四尺又以初商次商之长一丈三尺二寸再乘得一丈九百尺零八百寸与原积相减余一百四十一尺六百一十五寸即一十四万一千六百一十五寸为三商积乃以初商次商之高与阔一丈二尺作一百二十寸自乘得一万四千四百寸又以初商次商之长一丈三尺二寸作一百三十二寸与初商次商之高与阔一百二十寸相乘得一万五千八百四十寸倍之得三万一千六百八十寸两数相并得四万六千零八十寸为三商三方防面积以除三商积一十四万一千六百一十五寸足三寸则以三寸书于原积五寸之上合初商次商三商共一丈二尺三寸为初商次商三商之髙与阔加纵多一尺二寸得一丈三尺五寸为初商次商三商之长乃以初商次商三商之髙与阔一丈二尺三寸自乘得一丈五十一尺二十九寸又以初商次商三商之长一丈三尺五寸再乘得二丈零四十二尺四百一十五寸与原积相减恰尽即知立方之高与阔俱一丈二尺三寸其长为一丈三尺五寸也
设如带两纵相同立方积五百六十七尺其长与阔俱比髙多二尺问长阔髙各防何
法列积如开立方法商之共积五百六十七尺可商八尺因留两纵积故取略小之数商七尺乃以七尺书于原积七尺之上而以所商七尺为高加纵多二尺得九尺为长与阔即以长与阔九尺自乘得八十一尺又以髙七尺再乘得五百六十七尺书于原积之下相减恰尽是知立方之高为七尺加纵多二尺得九尺即立方之长与阔也如图甲乙丙丁戊己扁方体形容积五百六十七尺其甲乙为高甲子为阔甲巳为长甲乙七尺甲子甲己皆比甲乙多二尺即所带之纵其甲乙癸壬辛庚正方形即初商之积庚辛壬癸丙丁戊已磬折体形即所带之纵积也此法因长阔俱比高多故初商所得为髙于高加纵多即长与阔也
设如带两纵相同立方积三千四百六十八尺其长与阔俱比高多五尺问长阔高各防何
法列积如开立方法商之其三千尺为初商积可商十尺乃以十尺书于原积三千尺之上而以初商十尺为初商之髙加纵多五尺得十五尺为初商之长与阔即以初商之长与阔十五尺自乘得二百二十五尺又以初商之髙十尺再乘得二千二百五十尺书于原积之下相减余一千二百一十八尺为次商廉隅之共积乃以初商之长与阔十五尺自乘得二百二十五尺【此一方廉长阔皆带一纵也】又以初商之髙十尺与初商之长与阔十五尺相乘得一百五十尺倍之得三百尺【加倍为带纵两方廉即初商加纵多也】两数相并得五百二十五尺为次商三方廉面积以除次商廉隅之共积一千二百一十八尺足二尺则以二尺书于原积八尺之上而以初商之长与阔十五尺倍之得三十尺【此两长廉即长阔各带一纵也】与初商之髙十尺相并【此一长廉初商数也】得四十尺以次商之二尺乘之得八十尺为次商三长廉面积又以次商之二尺自乘得四尺为次商一小隅面积合三方廉三长廉一小隅面积共得六百零九尺为廉隅共法以次商之二尺乘之得一千二百一十八尺书于余积之下相减恰尽是知立方之高为十二尺加纵多五尺得十七尺为立方之长与阔也如图甲乙丙丁扁方体形容积三千四百六十八尺其甲乙髙十二尺甲戊长甲已阔俱十七尺甲戊比甲辛所多辛戊甲已比庚己所多甲庚俱五尺即纵多之数其从一角所分壬乙子癸扁方体形癸子与壬乙皆十尺即初商数壬癸与癸申皆十五尺即初商加纵多之数壬乙子癸扁方积二千二百五十尺即初商加纵多自乘又以初商再乘之数所余丑形寅形夘形为三方廉其中寅形为一正方廉每边十五尺即初商加纵多之数丑形夘形为二长方廉每高十尺长十五尺其长比髙多五尺即纵多之数其厚皆二尺即次商数辰形巳形午形为三长廉巳形长十尺即初商数辰形午形比巳形俱长五尺即纵多之数其阔与厚皆一尺亦即次商数其巳形一小正方体为隅其长阔高皆二尺亦即次商数合丑寅夘三方廉辰巳午三长廉巳一小方隅共成一磬折体形附于初商长方体之三面而成甲乙丙丁之总扁方体积也三商以后皆仿此递析开之
又法以初商积三千尺商十尺书于原积三千尺之上而以所商十尺为初商之髙加纵多五尺得十五尺为初商之长与阔即以初商之长与阔十五尺自乘得二百二十五尺又以初商之髙十尺再乘得二千二百五十尺书于原积之下相减余一千二百一十八尺为次商积乃以初商之长与阔十五尺自乘得二百二十五尺又以初商之高十尺与初商之长与阔十五尺相乘得一百五十尺倍之得三百尺两数相并得五百二十五尺为次商三方廉面积以除次商积一千二百一十八尺足二尺则以二尺书于原积八尺之上合初商次商共十二尺为初商次商之髙加纵多五尺得十七尺为初商次商之长与阔乃以初商次商之长与阔十七尺自乘得二百八十九尺又以初商次商之高十二尺再乘得三千四百六十八尺与原积相减恰尽即知立方之高为十二尺其长与阔得十七尺也
设如带两纵相同立方积一百零三万四千二百八十九寸其长与阔俱比高多三百三十寸问长阔髙各防何
法列积如开立方法商之其一百万寸为初商积可商一百寸乃以所商一百寸为高加纵多三百三十寸得四百三十寸为长与阔即以长与阔四百三十寸自乘得一十八万四千九百寸又以高一百寸再乘得一千八百四十九万寸大于原积十倍有余是初商不可商一百寸也乃改商十寸为高【既大于原积十倍有余故取十分之一商之为十寸】加纵多三百三十寸得三百四十寸为长与阔即以长与阔三百四十寸自乘得一十一万五千六百寸又以髙十寸再乘得一百一十五万六千寸仍大于原积是亦不可商一十寸也乃改商九寸书于原积九寸之上而以所商九寸为髙加纵多三百三十寸得三百三十九寸为长与阔即以长与阔三百三十九寸自乘得一十一万四千九百二十一寸又以髙九寸再乘得一百零三万四千二百八十九寸书于原积之下相减恰尽是知立方之髙为九寸加纵多三百三十寸得三百三十九寸为立方之长与阔也
设如带两纵相同立方积一十一丈五百零九尺二百六十八寸其长与阔俱比高多二尺一寸问长阔髙各防何
法列积如开立方法商之其一十一丈为初商积可商二丈乃以二丈书于原积一丈之上而以所商二丈为初商之髙加纵多二尺一寸得二丈二尺一寸为初商之长与阔乃以初商之长与阔二丈二尺一寸自乘得四丈八十八尺四十一寸又以初商之髙二丈再乘得九丈七百六十八尺二百寸书于原积之下相减余一丈七百四十一尺零六十八寸即一千七百四十一尺零六十八寸为次商廉隅之共积乃以初商之长与阔二丈二尺一寸作二十二尺一寸自乘得四百八十八尺四十一寸又以初商之髙二丈作二十尺与初商之长与阔二十二尺一寸相乘得四百四十二尺倍之得八百八十四尺两数相并得一千三百七十二尺四十一寸为次商三方廉面积以除次商廉隅之共积一千七百四十一尺零六十八寸足一尺则以一尺书于原积九尺之上而以初商之长与阔二十二尺一寸倍之得四十四尺二寸与初商之髙二十尺相并得六十四尺二寸以次商之一尺乘之得六十四尺二十寸为次商三长廉面积又以次商之一尺自乘仍得一尺为次商一小隅面积合三方廉三长廉一小隅面积共得一千四百三十七尺六十一寸为廉隅共法以次商之一尺乘之得一千四百三十七尺六百一十寸书于余积之下相减仍余三百零三尺四百五十八寸即三十万三千四百五十八寸为三商廉隅之共积其初商次商所得之二丈一尺为髙加纵多二尺一寸得二丈三尺一寸为长与阔乃以初商次商之长与阔二丈三尺一寸作二百三十一寸自乘得五万三千三百六十一寸又以初商次商之髙二丈一尺作二百一十寸与初商次商之长与阔二百三十一寸相乘得四万八千五百一十寸倍之得九万七千零二十寸两数相并得一十五万零三百八十一寸为三商三方廉面积以除三商廉隅之共积三十万零三千四百五十八寸足二寸则以二寸书于原积八寸之上而以初商次商之长与阔二百三十一寸倍之得四百六十二寸与初商次商之髙二百一十寸相加得六百七十二寸以三商之二寸乘之得一千三百四十四寸为三商三长廉面积又以三商之二寸自乘得四寸为三商一小隅面积合三方廉三长廉一小隅面积共得一十五万一千七百二十九寸为廉隅共法以三商之二寸乘之
【打 印】 【来源:读书之家-dushuzhijia.com】