得二十尺以高十二尺再乘得二百四十尺三归之得八十尺与先所得上下相等刍荛体积三百尺相并得三百八十尺即上下不等刍荛体之积也如甲乙丙丁戊上下不等刍荛体形自其上棱之甲戊两端直剖之则分为甲己辛壬戊一刍荛体甲乙丙辛与戊庚壬丁二尖方体故以与上长相等之己庚与己辛阔【与乙丙等】相乘即得己辛壬庚刍荛体之底面积与甲癸高相乘折半得甲己辛壬戊刍荛体积又以甲戊上长与丙丁下长相减所余丙辛壬丁二叚即二尖方体之共长与乙丙阔相乘得乙辛与庚丁二尖方体之底面积与高相乘三归之即得甲乙丙辛与戊庚壬丁二尖方体积与甲己辛壬戊一刍荛积相加即得甲乙丙丁戊一上下不等刍荛体之总积也
设如两两平行边斜长方体形长二尺四寸阔八寸高三尺七寸问积几何
法以长二尺四寸与阔八寸相乘得一尺九十二寸又以高三尺七寸再乘得七尺一百零四寸即两两平行边斜长方体形之积也如图甲乙丙丁戊己斜长方体形以乙丙阔与丙丁长相乘得乙丙丁庚长方面积以戊丙高再乘成己乙丙丁辛壬长方体凡平行平面之间所有立于等积底之各平行体其积必俱相等【见几何原本五巻第十九节】故甲乙丙丁戊己斜倚之长方体必与己乙丙丁辛壬正立之长方体为相等也
设如空心正方体积一千二百一十六寸厚二寸问内外方边各几何
法以厚二寸自乘再乘得八寸八因之得六十四寸与共积一千二百一十六寸相减余一千一百五十二寸六归之得一百九十二寸用厚二寸除之得九十六寸为内方边与外方边相乘长方面积乃以厚二寸倍之得四寸为长阔之较用带纵较数开平方法算之得阔八寸即内方边得长一尺二寸即外方边也如图甲乙丙丁戊己庚辛空心正方体其甲丑即空心正方体之厚以之自乘再乘八因之得壬辛子癸类八小隅体与空心正方体相减则余空心正方体之六面丑寅巳子类六长方扁体六归之得丑寅巳子一长方扁体用厚二寸除之得丑寅卯辰一长方面积其丑寅阔与戊己等即内方边其丑辰长与甲乙等即外方边其丑戊辛辰皆与甲丑厚度等丑戊辛辰并之即长阔之较故以厚二寸倍之为带纵求得阔为内方边长为外方边也
又法以厚二寸倍之得四寸为内方边与外方边之较自乘再乘得六十四寸与空心正方体积一千二百一十六寸相减余一千一百五十二寸三归之得三百八十四寸以内外方边之较四寸除之得九十六寸为长方面积以内外方边之较四寸为长阔之较用带纵较数开平方法算之得阔八寸即内方边加较四寸得一尺二寸即外方边也如图甲乙丙丁戊己庚辛空心正方体以戊己庚辛空心小正方形移置乙角之一隅则空心正方体变为甲戊辛庚丙丁壬磬折体形其甲戊即磬折体之厚为甲乙外方边与戊己内方边之较依开立方次商法分之得癸子丑三方廉体寅卯辰三长廉体巳一小隅体以甲戊厚度自乘再乘得巳一小隅体与共积相减余三方廉体三长廉体三归之则余癸一方廉体寅一长廉体共成午甲乙庚未申一扁方体其午甲厚与甲戊等以午甲厚除午甲乙庚未申扁方体则得甲乙庚未之长方面形甲戊即长阔之较故用带纵较数开平方法算之得乙庚阔与戊乙等即空心方体之内方边以甲戊与戊乙相加得甲乙即空心方体之外方边也
设如大小两正方体大正方体比小正方体每边多四寸积多二千三百六十八寸问大小两正方边各几何
法以大正方边比小正方边所多之较四寸自乘再乘得六十四寸与大正方体比小正方体所多之积二千三百六十八寸相减余二千三百零四寸三归之得七百六十八寸以边较四寸除之得一百九十二寸为长方面积乃以边较四尺为长阔之较用带纵较数开平方法算之得阔十二尺即小正方之边数加较四尺得十六尺即大正方之边数也如图甲乙丙丁一大正方体戊己庚辛一小正方体试于甲乙丙丁大正方体减去戊己庚辛小正方体余壬甲戊辛庚丙丁三面磬折体形即大正方积比小正方积所多之较甲戊为磬折体之厚即大正方边比小正方边所多之较此三面磬折体形依开立方次商法分之则得癸子丑三方廉体寅卯辰三长廉体巳一小隅体以甲戊边较自乘再乘得巳一小隅体与磬折体积相减余三方廉体三长廉体三归之则得癸一方廉体寅一长廉体共成午甲乙庚未申一扁方体其午甲厚与甲戊等以午甲厚除之则得甲乙庚未之长方面形甲戊即长阔之较故用带纵开平方法算之得乙庚阔与戊乙等即小正方之边数以甲戊与戊乙相加得甲乙即大正方之边数也
设如大小二正方体共边二十四尺共积四千六百零八尺问两体之每边及体积各几何
法以共边二十四尺自乘再乘得一万三千八百二十四尺内减共积四千六百零八尺余九千二百一十六尺三归之得三千零七十二尺以共边二十四尺除之得一百二十八尺为长方面积乃以共边二十四尺为长阔和用带纵和数开平方法算之得阔八尺即小正方之边数与共边二十四尺相减余十六尺即大正方之边数也如图甲乙丙丁一大正方体戊己庚辛一小正方体以共边二十四尺自乘再乘则成壬乙癸子一总正方体内减甲乙丙丁与戊己庚辛大小两正方体之共积余丑寅卯三方廉体辰巳午三长廉体三归之则得丑一方廉体辰一长廉体共成未壬乙丙戊申一扁方体用壬乙共边除之则得未壬戊申之长方面形其未壬阔与壬甲等其壬戊长与甲乙等故以壬乙共边为长阔和用带纵和数开平方法算之得未壬阔即小正方之边数与长阔和相减余壬戊长即大正
【打 印】 【来源:读书之家-dushuzhijia.com】