御制数理精蕴 - 第2部分

作者:【暂缺】 【297,284】字 目 录

再乘之正方体庚乙丙丁壬癸为三倍二率与一率自乘面积相乘之长方体【一率自乘三因之得三平面如以二率乘之成三扁方体合之即成三倍二率乘一率自乘面积之一长方体】比一率自乘再乘之正方体多一庚甲酉戊壬癸扁方体此扁方体即一率自乘用四率再乘之数与二率自乘再乘之积等若于一率自乘再乘之正方体内加入二率自乘再乘之正方体即如于甲乙丙丁戊己正方体上加一庚甲酉戊壬癸之扁方体成庚乙丙丁壬癸之长方体而以一率自乘之乙丙丁申方面除之必得庚乙为二率之三倍苟合乙丙丁申与辰己午未及子丑寅夘三方面除之必得庚子或子辰或辰乙为二率若不加积止以三方面除之则所得仍为一率之三分之一比二率数必小故以屡除所得之数屡次自乘再乘益入原积则积渐增而得数亦渐大递及末位则所少之积已足而除得之数即为二率之全数焉

设如圜径二十万求内容十八边形之一边几何法用连比例四率有一率求二率使一率与四率相加与二率三倍等之法以圜径二十万折半得十万为一率自乘再乘得一千兆为实又以半径十万自乘三因之得三百亿为法按益实归除之法除实得三万四千七百二十九【小余六三五五三三四】为二率即圜内十八边形之每一边也如甲圜内容十八边形每边之弧得圜周十八分之一皆二十度其通即圜内十八边形之一边试自圜心至圜界乙丙作甲乙甲丙二半径线遂成甲乙丙三角形复自圜界乙至圜界庚作一乙庚线则截甲丙线于戊又成乙丙戊三角形而乙庚为六十度之通复自圜界丙按丙戊线度至乙庚线之丁作一丙丁线则又成丙丁戊三角形此三三角形皆为同式形【乙丙戊三角形之乙角当庚丙弧为乙丙弧之倍则乙丙戊三角形之乙角与甲乙丙三角形之甲角等又与甲乙丙三角形同用丙角丙丁戊三角形之丁丙线与甲辛半径平行则丙丁戊三角形之丙角与甲丙辛三角形之甲角为相对错角亦必等又与乙丙戊三角形同用戊角是此三三角形之各角互相等而为同式形也】其相当各边俱成相连比例故甲乙与乙丙之比同于乙丙与丙戊之比乙丙与丙戊之比又同于丙戊与戊丁之比为相连比例四率而甲乙为一率乙丙为二率丙戊为三率戊丁为四率也又乙庚为六十度之通与甲乙一率等而乙戊丁己己庚三段皆与乙丙二率等是乙庚一率中有乙丙二率之三倍而少一丁戊四率也必以乙庚一率与丁戊四率相加方与乙丙二率之三倍等故用连比例四率有一率求二率法算之得二率为十八边形之一边也乙丙弧既为二十度乙丙边三万四千七百二十九【小余六三五五三三四】为二十度之通折半得一万七千三百六十四【小余八一七七六六七】即十度之正也

设如圜径二十万求内容九边形之一边几何法以半径十万为底仍以半径十万与圜内容十八边形之一边三万四千七百二十九【小余六三五五三三四】为两腰用三角形求中垂线法算之得中垂线三万四千二百零二【小余○一四三三二六】倍之得六万八千四百零四【小余○二八六六五二】即圜内容九边形之每一边也如甲圜容九边形每边之弧得圜周九分之一皆四十度试自圜心甲至圜界乙丙二处作甲乙甲丙二半径线遂成甲乙丙三角形其乙丙边为四十度之通如以乙丙弧四十度折半于丁作乙丁线即圜内容十八边形之一边仍自圜心甲至圜界丁作甲丁半径线又成甲乙丁三角形而甲丁线平分乙丙线于戊此乙戊线为甲乙丁三角形之中垂线即九边形每边之一半故以甲丁半径为底甲乙半径为大腰乙丁十八边形之一边为小腰求得中垂线倍之为九边形之每一边也乙丙弧既为四十度乙丙边为四十度之通其乙戊中垂线三万四千二百零二【小余○一四三三二六】即乙丁弧二十度之正也

按分作相连比例四率又法

设如以十万为一率作相连比例四率使一率与四率相加与二率两倍再加一三率之数等问二率三率四率各几何

法以一率十万自乘再乘得一千兆【成一立方体】为实又以一率十万自乘二因之得二百亿【成二平面积】为法以除原实一千兆得五万为尽数因减实大于益实故取畧小之数为四万乃以四万自乘再乘得六十四兆益于原实一千兆内得一千零六十四兆为益实复以所得四万自乘得一十六亿以一率十万再乘得一百六十兆于益实内减之余九百零四兆为正实按除法以所得四万与法二百亿相因得八百兆与正实相减余一百零四兆为第二位实以法之二百亿除之得五千仍取畧小之数为四千乃以首位所得四万合次位所得四千共四万四千自乘再乘得八十五兆一千八百四十亿益于原实一千兆内得一千零八十五兆一千八百四十亿为益实复以所得四万四千自乘得一十九亿三千六百万以一率十万再乘得一百九十三兆六千亿于益实内减之余八百九十一兆五千八百四十亿为正实按除法减首位所得四万与法二百亿相因之八百兆又减次位所得四千与法二百亿相因之八十兆余一十一兆五千八百四十亿为第三位实以法之二百亿除之得五百合前两位所得四万四千共四万四千五百自乗再乗得八十八兆一千二百一十一亿二千五百万益于原实一千兆内得一千零八十八兆一千二百一十一亿二千五百万为益实复以所得四万四千五百自乗得一十九亿八千零二十五万以一率十万再乗得一百九十八兆零二百五十亿于益实内减之余八百九十兆零九百六十一亿二千五百万为正实按除法减首位所得四万与法二百亿相因之八百兆又减次位所得四千与法二百亿相因之八十兆又减三位所得五百与法二百亿相因之一十兆余九百六十一亿二千五百万为第四位实以法之二百亿除之实不足法乃以第四位为空位而第五位得四故以四为末位合前四位所得四万四千五百空十共四万四千五百零四自乗再乗得八十八兆一千四百四十八亿九千零一十三万六千零六十四益于原实一千兆内得一千零八十八兆一千四百四十八亿九千零一十三万六千零六十四为益实复以所得四万四千五百零四自乗得一十九亿八千零六十万六千零一十六以十万再乗得一百九十八兆零六百零六亿零一百六十万于益实内减之余八百九十兆零八百四十二亿八千八百五十二万六千零六十四为正实按除法以五次所得之数于法相因之数递减之仍余四十二亿八千八百五十三万六千零六十四不尽是共除得四万四千五百零四为相连比例之二率也以二率之四万四千五百零四自乗得一十九亿八千零六十万六千零一十六以一率之十万除之得一万九千八百零六为三率以二率之四万四千五百零四二因之与三率之一万九千八百零六相加得十万八千八百一十四减去一率之十万余八千八百一十四为四率如以三率之一万九千八百零六自乗以一率之四万四千五百零四除之亦得八千八百一十四为四率也此为益实兼减实归除之法葢因此法止有一率之数作相连比例四率使一率与四率之共数与二率两倍再加一三率之数等而相连比例四率之理一率自乗用四率再乗与二率自乘再乗之数等又一率自乗用三率再乗与二率自乗用一率再乗之数等今立法以一率自乘再乗为原实较之二率加倍与一率自乗之面积相乗之数却少一一率自乗四率再乗之数又多一一率自乗三率再乗之数故以屡除所得之数屡次自乗再乗益入原实又以屡除所得之数屡次自乗以一率再乗与益实相减然后按法除之始足二率两倍之数也如图甲乙为一率庚子子辰皆为二率辰乙为三率庚甲为四率庚乙为一率四率之共数又为二率两倍再加一三率之共数甲乙丙丁戊巳为一率自乗再乘之正方体庚乙丙丁壬癸为两倍二率并一三率与一率自乗面积相乘之长方体比一率自乗再乗之正方体多一庚甲酉戊壬癸扁方体此扁方体即一率自乗四率再乗之扁方体与二率自乗再乗之积等比两倍二率与一率自乗面积相乗之扁方体多一辰乙丙丁午未扁方体此扁方体即一率自乗三率再乗之扁方体与二率自乗一率再乗之积等若于一率自乗再乗之正方体内加入二率自乗再乗之数再减去二率自乗一率再乗之数即如于甲乙丙丁戊己正方体内加入庚甲酉戊壬癸之扁方体减去辰乙丙丁午未之扁方体成一庚辰己午壬癸之扁方体而以一率自乗之辰己午未方面除之必得庚辰为二率之两倍苟合辰巳午未子丑寅夘二方面除之必得庚子或子辰为二率若不益少减多而以二方面除之则所得仍为一率之二分之一比二率数必大故以屡除所得之数屡次自乗再乗益入原积复以屡除所得之数自乗用一率再乗逐层与原积相减递及末位则所少之积渐足所多之积渐消而除得之数即为二率之全数焉

设如圜径二十万求内容十四边形之一边几何法用连比例四率有一率求第二率使一率与四率相加与二率两倍再加一三率等之法以圜径二十万折半得十万为一率自乗再乗得一千兆为实又以半径十万自乗倍之得二百亿为法按益实兼减实归除之法除实得四万四千五百零四【小余一八六七九一三】为二率即圜内十四边形之每一边也如甲圜内容十四边形每边之弧得圜周十四分之一皆二十五度四十二分五十一秒有余其通即圜内十四边形之一边试自圜心至圜界乙丙作甲乙甲丙二半径线遂成甲乙丙三角形复自圜界乙至圜界庚作一乙庚线则截甲丙线于戊又成乙丙戊三角形复自圜界丙按丙戊线度至乙庚线之丁作一丙丁线则又成丙丁戊三角形此三三角形皆为同式形【乙戊丙三角形之乙角当丙庚弧为乙丙弧之倍则乙戊丙三角形之乙角与乙甲丙三角形之甲角等又与乙甲丙三角形同用丙角而丙丁戊三角形之丁丙线与甲辛半径平行即丙丁戊三角形之丙角与甲丙辛三角形之甲角为相对错角亦必等又与乙丙戊三角形同用戊角是此三三角形之各角互相等而为同式形也】其相当各边俱成相连比例故甲乙与乙丙之比同于乙丙与丙戊之比乙丙与丙戊之比又同于丙戊与戊丁之比为相连比例四率而甲乙为一率乙丙为二率丙戊为三率戊丁为四率也又按乙戊度作壬戊线与丁丙平行则截甲乙线于壬乃自壬与乙丙平行作壬子线复自壬与乙戊平行作壬癸线则又成甲壬子与壬戊癸丙三角形与乙丙戊三角形等成壬癸子一三角形与丙丁戊三角形等其甲子癸戊皆与乙丙二率等而癸子与丁戊四率等是甲丙一率内有两二率一三率而少一四率也若以甲丙一率与癸子四率相加方与二率之两倍再加一三率之数等故用连比例四率有一率求二率法算之得二率为十四边形之每一边也

设如圜径二十万求内容七边形之一边几何法以半径十万为底仍以半径十万与圜内容十四边形之一边四万四千五百零四【小余一八六七九一三】为两腰用三角形求中垂线法算之得中垂线四万三千三百八十八【小余三七三九一一八】倍之得八万六千七百七十六【小余七四七八二三六】即圜内容七边形之每一边也如甲圜容七边形每边之弧得圜周七分之一皆五十一度二十五分四十二秒有余试自圜心甲至圜界乙丙二处作甲乙甲丙二半径线遂成甲乙丙三角形其乙丙边为五十一度二十五分四十二秒有余之通如以乙丙弧五十一度二十五分四十二秒有余折半于丁作乙丁线即圜内容十四边形之一边仍自圜心甲至圜界丁作甲丁半径线又成甲乙丁三角形而甲丁线平分乙丙线于戊此乙戊线为甲乙丁三角形之中垂线即七边形每边之一半故以甲丁半径为底甲乙半径为大腰乙丁十四边形之一边为小腰求得乙戊中垂线倍之为七边形之每一边也

三要【八余八万零九百零一有本弧之正求本弧之余有本弧之正余求倍弧之正余有本弧之正】

设如本弧三十六度之正五万八千七百七十八【余求半弧之正余】求余弧五十四度之正几何法以三十六度之正五万八千七百七十八【小余五二五二二九】为勾半径十万为求得股八万零九百零一【二小余五二五二二九】为五十四度之正即三十六度之余也如甲乙丙九十度之一象限其甲乙正弧三十六度乙丙余弧五十四度乙丁为三十六度之正试自乙至象限中心戊作乙戊半径线遂成乙丁戊勾股形乙戊为乙丁为勾求得丁戊股与乙己等为乙丙余弧五十四度之正即甲乙正弧三十六度之余也

设【二小余六九】如本弧三十六度之正【九四三七五小余五二五二二九二】五万八千七百七十【小余六九九四三七五】求倍弧七十二度之正余各几何

法以半径十万为一率本弧之正五万八千七百七十八【六度之余与戊辛等】为二率本弧之余八万零九百零一【小余五二五二二九二】为三率求得四率四万七千五百五十二【小余六九九四三七五】倍之得九万五千一百零五【小余八二五八一四七】即倍弧七十二度之正也求余则以三十六度之正五万八千七百七十八【小余六五一六二九四】自乘以半径十万除之得三万四千五百四十九【小余五二五二二九二】倍之得六万九千零九十八【小余一五○二八一二】与

打 印】 【来源:读书之家-dushuzhijia.com】

首页上一页12345 6789下一页末页共80页/160000条记录