分之比同于十二面体中心至毎边正中之斜线与每边之半之比既得每边之半倍之即八面体外切十二面体之一边也
设如十二面体每边一尺二寸求内容二十面体之每一边几何
法以十二面体毎边一尺二寸用求十二面体中心至毎面中心之立垂线法求得中心至毎边正中之斜线一尺五寸七分零八豪二丝零三微有余又求得每一面中心至边之垂线八寸二分五厘八毫二丝九忽一微有余乃以中心至毎边正中之斜线为每一面中心至边之垂线为勾求得股一尺三寸三分六厘二豪一丝九忽六微有余倍之得二尺六寸七分二厘四豪三丝九
忽二微有余为十二面体内容圆 【十】球
全径乃用【面】求球内容二十面体之一边法以理分中末线之全分一○○○○○○○○为股大分六一八○三三九九为勾求得一一七五五七○五○为一率大分六一八○三三九九为
二率今所得 【体】之圆球全径二尺六寸七分二厘四豪三丝九忽二微为三率求得四率一尺四寸零四厘九豪八丝四忽四微有余即十二面体内容二十面体之每一边也如图甲乙丙丁戊十二面体内容己庚辛壬癸二十面体以二十面体之十二角切于十二面体各面之中心则十二面体中心至毎面中心之立垂线即内容二十面体中心至
各角之斜线十二面体 【之】内容圆球径即二十面体外切圆球径故先求得十二面体内容圆球径又求得球内容二一边即十二面体内容二十面体之一边也如有二十面体之一边求外切十二面体之一边则先求得二十面体外
切圆【为】球径又求 【二】得球外切十二面体之一边即二十面体外切十二面体之一
边也设如二十面体每边一尺二寸求内容正方体之每一边
几何法以二十面体毎边一尺二寸用求二十面体中心至每面中心之立垂线法求得中心至毎边正中之斜线九寸七分零八豪二丝零三微有余又求得每一面中心至边之垂线三寸四分六厘四豪一丝零一微有余乃以中心至毎边正中之斜线为以毎一面中心至边之垂线为勾求得股九寸零六厘九豪一丝三忽五微有余倍之得一尺八寸一分三厘八豪二丝七忽有余
十面体内容圆【寸】球全径乃用【求】求球
内容正方体之一边【内】法以球径自乗三归开平方得一尺零四分七厘二豪一丝三忽四微有余即二十面体内容正方体之毎一边也如图甲乙丙丁戊己二十面体内容庚辛壬癸正方体以正方体之八角切于二十面体之八面之中心则二十面体中心至毎一面中心之立垂线即内容正方体中心至角
之斜线二十面体 【容】内容圆球径即正
方 【四】体外切圆球径故先求得二十【面】
面体内容【体】圆球径又求得球内容正方体之一边即二十面体内客正方体之一边也如有正方体之一边求外切
二十面体之一边则先求【之】得正方体
【毎】外切圆球径又求得球外切二十面
体之一边即正方体外
切二十面体之一边也设如二十面体每边一尺二一边几何
法以二十面体毎边一尺二寸用求二十面体中心至每面中心之立垂线法求得立垂线九寸厘六厘九豪一丝三忽五微有余【边即二法】倍之得一尺八寸一分三厘八豪二丝七忽有余为二十面
体内客圆【见】球全径乃用【前】求球内容四面体之毎一边法以球径自乗三归二因开平方得一尺四寸八分零九豪八丝三忽五微有余即二十面体内容四面体之每一边也如图甲乙丙丁戊己二十面体内容庚辛壬癸四面体以四面体之四角切于二十面体之四面之中心则二十面体中心至每面中心之立垂线即内容四面体中心至角之
斜线二十面体内 【题】容圆球径即四面体外切圆球径故先求得二十面体内容圆球径又求得球内容四面体之一十面体内容四面体之毎一边也如有四面体之一边求外切二十面体之一边则先求得四面体外切圆球径又求
得 【面】球外切二十面体之一边即四面体外切二十面体之一边
也设如二十面体每边一尺二寸求内容八面体之每一边几
何法以理分中末线之大分六一八○三三九九为一率全分一○○○○○○○○为二率今所设之二十面体毎边一尺二寸折半得六寸为三率求得四率九寸七分零八豪二丝零三微有余为二十面体中心至毎边正中之斜线倍之得一尺九寸四分一厘六豪四丝零六微有【即二十面体外切正方体之一边】余为内容八面体两角相对之斜线自乗折半开平方得一尺三寸七分二厘九豪四丝七忽一微有余即二十面体内容八体之毎一边也如图甲乙丙丁戊己二十面体内容庚辛壬癸八面体以八面体之六角切于二十面体之六棱则二十面体中心至每边正中之斜线即内容八面体中心至各角之斜线倍之则得八面体两角相对之斜线故用斜求方边法求得方边即二十面体内容八面体之毎一边也如有八面体之每一边求外切二十面体之每一边则先求得八面体之角相对斜线折半为外切二十面体中心至每边正中之斜线乃以理分中末线之全分与大分之比同于二十面体中心至每边正中之斜线与毎边之半之比既得毎边之半倍之即八面体外切二十面体之一边也
设如二十面体每边一尺二寸求内容十二面体之每一边几何
法以二十面体毎边一尺二寸用求二十面体中心至毎面中心之立垂线法求得立垂线九寸零六厘九豪一丝三忽五微有余【面体】见倍之得一尺八寸一分三厘八豪二丝七忽有余为二十面
体内容圆【中】球全径乃用【法】求球内容十二面体之一边法以理分中末线之全分一○○○○○○○○为股小分三八一九六六○一为勾求得一○七○四六六二六为一率小分三八一
九 六六一为二率今所得 【前】之圆球全径一尺八寸一分三厘八豪二丝七忽有余为三率求得四率六寸四分七厘二豪一丝三忽五微有余即二十面体内容十二面体之每一边也如图甲乙丙丁戊二十面体内容己庚辛壬癸十二面体以十二面体之二十角切于二十面体各面之中心则二十面体中心至每面中心之立垂线即内容十二
心至角之斜线二十面体内容圆 【每】球
径即十二面体外切【一】圆球径故先求得二十面体内容圆球径又求得球内容十二面体之一边即二十面体内容十二面体之一边也如有十二面体之一边求外切二十面体之一边则先求
得十二面体外【边】切圆球径 【也】又求得球外切二十面体之一边即十二面体外切二十面体之
更体形
设如正方体每边一尺二寸今欲作与正方体积相等之圆球体问径几何
法用体积相等边线不同之定率比例以定率之正方体之每边一○○○○
○○○○为一率圆【积】球径一二四○七○○九八为二率今所设之正方体之毎边一尺二寸为三率求得四率一尺四寸八分八厘八豪四丝一忽有余
即 【亦】圆球之径也葢正方体之每边为
一○○○○○○○【为】○圆球径为一二四○七○○九八则两体积相等故以子丑寅卯正方体之每边一○○○
○○○○○与【相】辰巳圆球径一二四○七○○九八之比即同于今所设之甲乙丙丁正方体之每边一尺二寸与今所得之戊己圆球径一尺四寸八分八厘八豪四丝一忽有余之比而两体等也
设如正方体积一尺七百二十八寸今欲作与正方边相等之圆球体问积几何
法用边线相等体积不同之定率比例以定率之正方体积一○○○○○○
○○○为一率圆 【八】球积五二三五九八七七五为二率今所设之正方体积一尺七百二十八寸为三率求得四率九百零四寸七百七十八分六百八十
三厘有余即 【分】圆球之积也葢正方体
积为一○○○○○○○○ 【六】○圆球积为五二三五九八七七五则正方体
之每【百】边与圆球径相等故以子丑寅卯正方体积一○○○○○○○○○
【八】与辰巳圆球积五二三五九八七七
五之比即同于今所设之甲乙丙丁正方体积一尺七百二十八寸与今所得之戊己圆球积九百零四寸七百七十十三厘有余之比而正方体之每边与
圆 【分】球径亦为相等
也设如圆球径一尺二寸今欲作与圆球积相等之四面体问毎一边几
何法用体积相等边线不同之定率比
例以定率之 【二】圆球径一二四○七○○九八为一率四面体之毎边二○三九六四八九○为二率今所设之圆球径一尺二寸为三率求得四率一尺九寸七分二厘七豪三丝八忽有余即四
面体之每一边也 【厘】葢圆球径为一二四○七○○九八四面体之毎边为二○三九六四八九○则两体积相等故
以 【七】子丑圆球径一二四○七○○九八与寅卯辰巳四面体之每边二○三九六四八九○之比即同于今所设【豪】之甲乙圆球径一尺二寸与今所得之丙丁戊己四面体之每边一尺九寸七三丝八忽有余之比而两体积亦为相等也
设如圆球积一尺七百二十八寸今欲作与圆球径相等之四面体问积几何
法用边线相等体积不同之定率比例
以定率之圆 【面】球积五二三五九八七七五为一率四面体积一一七八五一一二九为二率今所设之圆球积一尺七百二十八寸为三率求得四率三百八十八寸九百三十六分六百四十五
厘有余即四面体之积也葢 【体】圆球积为五二三五九八七七五四面体积为
一一七八五一一二九 【积】则圆球径与
四面体之每边相等故以【三】子丑圆球积五二三五九八七七五与寅卯辰巳四面体积一一七八五一一二九之比即同于今所设之甲乙圆球积一尺七百二十八寸与今所得之丙丁戊己四百八十八寸九百三十六分六百四十
五厘有余之比而圆【面】球径与四面体之毎边亦为相等
也设如八面体每边一尺二寸今欲作与八面体积相等之十二面体问每边几
何法用体积相等边线不同之定率比例以定率之八面体之每边一二八四八九八二九为一率十二面体之每边五○七二二二○七为二率今所设之八面体之每边一尺二寸为三率求得四率四寸七分三厘七豪零七忽有余即十二面体之每一边也葢八面体之每边为一二八四八九八二九十二面体之每边为五○七二二二○七则两体积相等故以子丑寅卯八面体之每边一二八四八九八二九与辰巳午未申十二面体之每边五○七二二二○七之比即同于今所设之甲乙丙丁八体之每边一尺二寸与今所得之戊己庚辛壬十二面体之毎边四寸七分三厘七豪零七忽有余之比而两体积亦为相等也
设如八面体积一尺七百二十八寸今欲作与八面体毎边相等之二十面体问积几何
法用边线相等体积不同之定率比例以定率之八面体积四七一四○四五二一为一率二十面体积二一八一六九四九六九为二率今所设之八面体积一尺七百二十八寸为三率求得四率七尺九百九十七寸三百一十一分七百三十二厘有余即二十面体之积也葢八面体积为四七一四○四五二一二十面体积为二一八一六九四九六九则八面体之毎边与二十面体之毎边相等故以子丑寅卯八面体积四七一四○四五
【打 印】 【来源:读书之家-dushuzhijia.com】