平方乘少一根得少二立方以二平方乘少二平方得少四三乘方以二平方乘二立方得四四乘方相加共得四四乘方少八三乘方多二立方又多二平方即所求之数也如以数明之以根爲三则一平方爲九一立方爲二十七一三乘方爲八十一一四乘方爲二百四十三上数二立方得五十四少二平方得少十八少一根得少三是五十四少十八又少三爲三十三下数二平方得十八少二根得少六是十八少六爲十二相乘所得九百七十二即四四乘方之数所得少六百四十八即少八三乘方之数所得多五十四即多二立方之数所得多十八即多二平方之数葢以下数十二与上数三十三相乘得三百九十六即九百七十二内少六百四十八又多五十四复多十八也
设如有三平方少二根多二眞数与一平方多二根少三眞数相乘问得几何
法以少三眞数乘多二眞数得少六眞数以少三眞数乘少二根得多六根以少三眞数乘三平方得少九平方又以多二根乘多二眞数得多四根以多二根乘少二根得少四平方以多二根乘三平方得多六立方又以一平方乘多二眞数得多二平方以一平方乘少二根得少二立方以一平方乘三平方得三三乘方相加得三三乘方多四立方少十一平方多十根少六眞数即所求之数也如以数明之以根爲四则一平方爲十六一立方爲六十四一三乘方爲二百五十六上数三平方得四十八少二根得少八多二眞数共得四十二下数一平方得十六多二根得多八少三眞数共得二十一相乘所得七百六十八即三三乘方之数所得多二百五十六即多四立方之数所得少一百七十六即少十一平方之数所得多四十即多十根之数所得少六即少六眞数之数葢以下数二十一与上数四十二相乘得八百八十二即七百六十八多二百五十六又少一百七十六仍多四十复少六也
除法
凡除法按位列数必以眞数爲单位法尾未至眞数者须补○以存其位【如法尾爲根则补一○以存眞数位法尾爲平方则补二○以存眞数位法尾爲立方则补三○以存眞数位】将得数首位纪于眞数之上【如眞数之位爲○者则纪于○位之上】眞数所对实中之位即得数首位之数【如眞数对实中根位即定得数首位爲根如眞数对实中平方位即定得数首位爲平方如眞数对实中立方位即定得数首位爲立方余俱仿此】其归除递减皆与常法同至于定号亦与乘法同俱详设如于左
设如有十二立方多九平方多六根以三眞数除之问得几何
法以三眞数除十二立方得四立方以四立方乘三眞数得十二立方与实相减恰尽余多九平方多六根复以三眞数除多九平方得多三平方以多三平方乘三眞数得多九平方与实相减恰尽余多六根又以三眞数除多六根得多二根以多二根乘三眞数得多六根与实相减恰尽无余是爲四立方多三平方多二根即所求之数也此法葢因眞数除立方多平方与多根故得数之位仍从实数之位且眞数之位下对实中立方之位故定得数首位亦爲立方又因实数皆爲多故得数亦皆爲多也如以数明之以根爲三则一平方爲九一立方爲二十七实数十二立方得三百二十四多九平方得多八十一多六根得多十八是三百二十四多八十一又多十八共爲四百二十三以眞数三除之所得一百零八即四立方之数所得多二十七即多三平方之数所得多六即多二根之数葢以四百二十三以三除之得一百四十一即一百零八多二十七又多六也
设如有十二立方多八平方多六根以二根除之问得几何
法因法尾未至眞数位故设一空眞数位以补之以二根除十二立方得六平方以六平方乘二根得十二立方与实相减恰尽余多八平方多六根复以二根除多八平方得多四根以多四根乘二根得多八平方与实相减恰尽余多六根复以二根除多六根得多三眞数以多三眞数乘二根得多六根与实相减恰尽无余是爲六平方多四根多三眞数即所求之数也此法葢因根数除立方多平方与多根故根除立方得平方根除多平方得多根根除多根而得多眞数且眞数之位下对实中平方之位故定得数首位亦爲平方又因实数皆爲多故得数亦皆爲多也如以数明之以根爲二则一平方爲四一立方爲八实数十二立方得九十六多八平方得多三十二多六根得多十二是九十六多三十二又多十二共爲一百四十法数二根爲四除之所得二十四即六平方之数所得多八即多四根之数所得多三即多三眞数之数葢一百四十以四除之得三十五即二十四多八又多三也
设如有四三乘方多八立方又多八平方以四平方除之问得几何
法以四平方除四三乘方得一平方以一平方乘四平方得四三乘方与实相减恰尽余多八立方多八平方复以四平方除多八立方得多二根以多二根乘四平方得多八立方与实相减恰尽余多八平方又以四平方除多八平方得多二眞数以多二眞数乘四平方得多八平方与实相减恰尽无余是爲一平方多二根又多二眞数即所求之数也此法葢因平方除三乘方多立方与多平方故平方除三乘方得平方平方除多立方得多根平方除多平方得多眞数且眞数之位下对实中平方之位故定得数首位亦爲平方又因实数皆爲多故得数亦皆爲多也如以数明之以根爲三则一平方爲九
一立方爲二十七一三乘方爲八十一实数四三乘方得三百二十四多八立方得多二百一十六多八平方得多七十二是三百二十四多二百一十六又多七十二共爲六百一十二法数四平方爲三十六除之所得之九即一平方之数所得多六即
【打 印】 【来源:读书之家-dushuzhijia.com】