尺合初商共五百六十尺乘三次得九百八十三亿四千四百九十六万尺小于原积可减也乃定次商爲六十尺书于方积七万尺之上而以五百六十尺乘三次之九百八十三亿四千四百九十六尺与原积相减余五十亿一千零二十一万尺爰以方根第三位积七千一百二十一尺续书于后共五十亿一千零二十一万七千一百二十一尺爲三商廉隅之共积而以初商次商之五百六十尺乘二次得一亿七千五百六十一万六千尺四因之得七亿零二百四十六万四千尺爲三商亷法以除三商积足七倍即定三商爲七尺书于方积一尺之上合初商次商共五百六十七尺乘三次得一千零三十三亿五千五百一十七万七千一百二十一尺与原积相减恰尽是开得五百六十七尺爲三乘方每一根之数也葢三乘方之本法有四自乘再乘廉六自乘廉四长廉一小隅既得初商乃以初商自乘再乘四因之得四自乘再乘廉爲法除余积得次商以初商自乘与次商相乘六因之爲六自乘廉以次商自乘与初商相乘四因之爲四长廉以次商自乘再乘爲一小隅合四自乘再乘廉六自乘廉四长廉一小隅以次商乘之爲次商廉隅之共积今此法得次商之后合初商乘三次即得应减之积也
又法用开平方法两次开之初以原积一千零三十三亿五千五百一十七万七千一百二十一尺开平方得三十二万一千四百八十九尺次以三十二万一千四百八十九尺复开平方得五百六十七尺即三乘方每一根之数也又用表开法列积一千零三十三亿五千五百一十七万七千一百二十一尺自末位起算隔三位作记定位同前乃截方根第二位以前积一○三三五五一七爲初商次商之积于表中取比此数相近略小之数爲九八三四四九六【即初商次商乘三次之数】其所对初商根爲五次商根爲六即将五六书于初商次商之位而以九八三四四九六书于初商次商积之下相减余五○一○二一乃以九八三四四九六格内三商廉法七○二四六除余积五○一○二一足七倍即定三商爲七书于三商之位合初商次商共五百六十七乘三次得一千零三十三亿五千五百一十七万七千一百二十一尺与原积相减恰尽即定三乘方根爲五百六十七尺也
四乘方
设如有四乘方积二百六十二兆零三十五亿四千九百九十七万八千一百二十五尺开四乘方问每一根之数几何
法列方积二百六十二兆零三十五亿四千九百九十七万八千一百二十五尺自末位起算每方积五位定方根一位故隔四位作记乃于五尺上定单位九十万尺上定十位空百亿尺上定百位其二百六十二兆尺爲初商积与七百乘四次之数相准即定初商爲七百尺书于方积空百亿尺之上而以七百尺乘四次之一百六十八兆零七百亿尺书于初商积之下相减余九十三兆九千三百亿尺爰以方根第二位余积三十五亿四千九百九十万尺续书于后共九十三兆九千三百三十五亿四千九百九十万尺爲次商廉隅之共积而以初商之七百尺乘三次得二千四百零一亿尺五因之得一兆二千零五亿尺爲次商廉法以除次商积足七十倍因定次商爲七十尺合初商共七百七十尺乘四次得二百七十兆六千七百八十四亿一千五百七十万尺大于原积是次商不可商七也乃改商六爲六十尺合初商共七百六十尺乘四次得二百五十三兆五千五百二十五亿三千七百六十万尺小于原积可减也乃定次商爲六十尺书于方积九十万尺之上而以七百六十尺乘四次之二百五十三兆五千五百二十五亿三千七百六十万尺与原积相减余八兆四千五百一十亿一千二百三十万尺爰以方根第三位余积七万八千一百二十五尺续书于后共八兆四千五百一十亿一千二百三十七万八千一百二十五尺爲三商廉隅之共积而以初商次商之七百六十尺乘三次得三千三百三十六亿二千一百七十六万尺五因之得一兆六千六百八十一亿零八百八十万尺爲三商廉法以除三商积足五倍即定三商爲五尺书于方积五尺之上合初商次商共七百六十五尺乘四次得二百六十二兆零三十五亿四千九百九十七万八千一百二十五尺与原积相减恰尽是开得七百六十五尺爲四乘方每一根之数也葢四乘方之本法有五三乘廉十自乘再乘廉十自乘廉五长廉一小隅既得初商乃以初商乘三次五因之得五三乘廉爲法除余积得次商以初商自乘再乘与次商相乘十因之爲十自乘再乘廉以初商自乘次商自乘两数相乘十因之爲十自乘廉以次商自乘再乘与初商相乘五因之爲五长廉以次商数乘三次爲一小隅合五三乘廉十自乘再乘廉十自乘廉五长廉一小隅以次商乘之爲次商廉隅之共积今此法得次商之后合初商乘四次即得应减之积也又用表开法列积二百六十二兆零三十五亿四千九百九十七万八千一百二十五尺自末位起算隔四位作记定位同前乃截方根第二位以前积二六二○○三五四九九爲初商次商之积于表中取比此数相近略小之数爲二五三五五二五三七六【即初商次商乘四次之数】其所对初商根爲七次商根爲六即将七六书于初商次商之位而以二五三五五二五三七六书于初商次商积之下相减余八四五一○一二三乃以二五三五五二五三七六格内三商廉法一六六八一○八八除余积八四五一○一二三足五倍即定三商爲五书于三商之位合初商次商共七百六十五乘四次得二百六十二兆零三十五亿四千九百九十七万八千一百二十五尺与原积相减恰尽即定四乘方根爲七百六十五尺也
五乘方
设如有五乘方积八十五京九千零六十八兆三千零一十亿二千五百三十九万零六百二十五尺开五乘方问每一根之数几何
法列方积八十五京九千零六十八兆三千零一十亿二千五百三十九万零六百二十五尺自末位起算每方积六位定方根一位故隔五位作记乃于五尺上定单位五百万尺上定十位八兆尺上定百位其八十五京九千零六十八兆尺爲初商积与九百乘五次之数相准即定初商爲九百尺书于方积八兆尺之上而以九百尺乘五次之五十三京一千四百四十一尺书于初商积之下相减余三十二京七千六百二十七兆尺爰以方根第二位积三千零一十亿二千五百万尺续书于后共三十二京七千六百二十七兆三千零一十亿二千五百万尺爲次商廉隅之共积而以初商之九百尺乘四次得五百九十兆四千九百亿尺六因之得三千五百四十二兆九千四百亿尺爲次商廉法以除次商积足八十倍因定次商爲八十尺按法相乘大于原积乃改商七十尺书于方积五百万尺之上合初商共九百七十尺乘五次得八十三京二千九百七十二兆零四十九亿二千九百万尺与原积相减余二京六千零九十六兆二千九百六十亿九千六百万尺爰以方根第三位积三十九万零六百二十五尺续书于后共二京六千零九十六兆二千九百六十亿九千六百三十九万零六百二十五尺爲三商廉隅之共积而以初商次商之九百七十尺乘四次得八百五十八兆七千三百四十亿二千五百七十万尺六因之得五千一百五十二兆四千零四十一亿五千四百二十万尺爲三商廉法以除三商积足五倍即定三商爲五尺书于方积五尺之上合初商次商共九百七十五尺乘五次得八十五京九千零六十八兆三千零一十亿二千五百三十九万零六百二十五尺与原积相减恰尽是开得九百七十五尺爲五乘方每一根之数也葢五乘方之本法有六四乘廉十五三乘廉二十自乘再乘廉十五自乘廉六长廉一小隅既得初商乃以初商乘四次六因之得六四乘廉爲法除余积得次商以初商乘三次与次商相乘十五乘之爲十五三乘廉以初商自乘再乘次商自乘两数相乘二十乘之爲二十自乘再乘廉以初商自乘次商自乘再乘两数相乘十五乘之爲十五自乘廉以次商乘三次与初商相乘六因之爲六长廉以次商乘四次爲一小隅合六四乘廉十五三乘廉二十自乘再乘廉十五自乘廉六长廉一小隅以次商乘之爲次商廉隅之共积今此法得次商之后合初商乘五次即得应减之积也
又法用开平方开立方法开之初以原积八十五京九千零六十八兆三千零一十亿二千五百三十九万零六百二十五尺开平方得九亿二千六百八十五万九千三百七十五尺又以九亿二千六百八十五万九千三百七十五尺开立方得九百七十五尺即五乘方每一根之数也
又用表开法列积八十五京九千零六十八兆三千零一十亿二千五百三十九万零六百二十五尺自末位起算隔五位作记定位同前乃截方根第二位以前积八五九○六八三○一○二五爲初商次商之积于表中取比此数相近略小之数爲八三二九七二○○四九二九【即初商次商乘五次之数】其所对初商根爲九次商根爲七即将九七书于初商次商之位而以八三二九七二○○四九二九书于初商次商积之下相减余二六○九六二九六○九六乃以八三二九七二○○四九二九格内三商廉法五一五二四○四一五四除余积二六○九六二九六○九六足五倍即定三商爲五书于三商之位合初商次商共九百七十五乘五次得八十五京九千零六十八兆三千零一十亿二千五百三十九万零六百二十五尺与原积相减恰尽即定五乘方根爲九百七十五尺也
六乘方
设如有六乘方积三垓二千五百八十九京四千五百九十九兆二千五百二十三亿九千五百九十万零九百二十八尺开六乘方问每一根之数几何
法列方积三垓二千五百八十九京四千五百九十九兆二千五百二十三亿九千五百九十万零九百二十八尺自末位起算每方积七位定方根一位故隔六位作记乃于八尺上定单位九千万尺上定十位五百兆尺上定百位其三垓二千五百八十九京四千五百兆尺爲初商积与八百乘六次之数相准即定初商爲八百尺书于方积五百兆尺之上而以八百尺乘六次之二垓零九百七十一京五千二百兆尺书于初商积之下相减余一垓一千六百一十七京九千三百兆尺爰以方根第二位积九十九兆二千五百二十三亿九千万尺续书于后共一垓一千六百一十七京九千三百九十九兆二千五百二十三亿九千万尺爲次商廉隅之共积而以初商之八百尺乘五次得二十六京二千一百四十四兆尺七因之得一百八十三京五千零八兆尺爲次商廉法以除次商积足六十倍因定次商爲六十尺按法相乘大于原积乃改商五十尺书于方积九千万尺之上合初商共八百五十尺乘六次得三垓二千零五十七京七千零八十八兆二千八百一十二亿五千万尺与原积相减余五百三十一京七千五百一十兆九千七百一十一亿四千万尺爰以方根第三位积五百九十万零九百二十八尺续书于后共五百三十一京七千五百一十兆九千七百一十一亿四千五百九十万零九百二十八尺爲三商廉隅之共积而以初商次商之八百五十尺乘五次得三十七京七千一百四十九兆五千一百五十六亿二千五百万尺七因之得二百六十四京零四十六兆六千零九十三亿七千五百万尺爲三商廉法以除三商积足二倍即定三商爲二尺书于方积八尺之上合初商次商共八百五十二尺乘六次得三垓二千五百八十九京四千五百九十九兆二千五百二十三亿九千五百九十万零九百二十八尺与原积相减恰尽是开得八百五十二尺爲六乘方每一根之数也葢六乘方之本法有七五乘廉二十一四乘廉三十五三乘廉三十五自乘再乘廉二十一自乘廉七长廉一小隅既得初商即以初商乘五次七因之得七五乘廉爲法除余积得次商以初商乘四次与次商相乘二十一乘之爲二十一四乘廉以初商乘三次次商自乘两数相乘三十五乘之爲三十五三乘廉以初商自乘再乘次商自乘再乘两数相乘三十五乘之爲三十五自乘再乘廉以初商自乘次商乘三次两数相乘二十一乘之爲二十一自乘廉以次商乘四次与初商相乘七因之爲七长廉以次商乘五次爲一小隅合七五乘廉二十一四乘廉三十五三乘廉三十五自乘再乘廉二十一自乘廉七长廉一小隅以次商乘之爲次商廉隅之共积今得次商之后合初商乘六次即得应减之积也
又用表开法列积三垓二千五百八十九京四千五百九十九兆二千五百二十三亿九千五百九十万零九百二十八尺自末位起算隔六位作记定位同前乃截方根第二位以前积三二五八九四五九九二五二三九爲初商次商之积于表中取比此数相近略小之数爲三二○五七七○八八二八一二五【即初商次商乘六次之数】其所对初商根爲八次商根爲五即将八五书于初商次商之位而以三二○五七七○八八二八一二五书于初商次商积之下相减余五三一七五一○九七一一四乃以三二○五七七○八八二八一二五格内三商廉法二六四○○四六六○九三七除余积五三一七五一○九七一一四足二倍即定三商爲二书于三商之位合初商次商共八百五十二尺乘六次得三垓二千五百八十九京四千五百九十九兆二千五百二十三亿九千五百九十万零九百二十八尺与原积相减恰尽即定六乘方根爲八百五十二尺也
七乘方
设如有七乘方积六百三十八垓五千一百三十二京零二百三十三兆九千三百八十三亿九千零一十九万三千一百二十一尺开七乘方问每一根之数几何
法列方积六百三十八垓五千一百三十二京零
【打 印】 【来源:读书之家-dushuzhijia.com】