御制数理精蕴 - 第2部分

作者:【暂缺】 【297,284】字 目 录

积相减恰尽是开得四百二十二尺爲八乘方每一根之数也葢八乘方之本法有九七乘廉三十六六乘廉八十四五乘廉一百二十六四乘廉一百二十六三乘廉八十四自乘再乘廉三十六自乘廉九长廉一小隅既得初商乃以初商乘七次九因之得九七乘廉爲法除余积得次商以初商乘六次与次商相乘三十六乘之爲三十六六乘廉以初商乘五次次商自乘两数相乘八十四乘之爲八十四五乘廉以初商乘四次次商自乘再乘两数相乘一百二十六乘之爲一百二十六四乘廉以初商乘三次次商乘三次两数相乘一百二十六乘之爲一百二十六三乘廉以初商自乘再乘次商乘四次两数相乘八十四乘之爲八十四自乘再乘廉以初商自乘次商乘五次两数相乘三十六乘之爲三十六自乘廉以次商乘六次与初商相乘九因之爲九长廉以次商乘七次爲一小隅合九七乘廉三十六六乘廉八十四五乘廉一百二十六四乘廉一百二十六三乘廉八十四自乘再乘廉三十六自乘廉九长廉一小隅以次商乘之爲次商廉隅之共积今此法得次商之后合初商乘八次即得应减之积也又法用开立方法两次开之初以原积四千二百四十四垓三千五百八十四京九千一百八十五兆四千四百四十九亿五千二百八十二万七千三百九十二尺开立方得七千五百一十五万一千四百四十八尺次以七千五百一十五万一千四百四十八尺复开立方得四百二十二尺即八乘方每一根之数也

又用表开法列积四千二百四十四垓三千五百八十四京九千一百八十五兆四千四百四十九亿五千二百八十二万七千三百九十二尺自末位起算隔八位作记定位同前乃截方根第二位以前积四二四四三五八四九一八五四四四爲初商次商之积于表中取比此数相近畧小之数爲四○六六七一三八三八四九四七二【即初商次商乘八次之数】其所对初商根爲四次商根爲二即将四二书于初商次商之位而以四○六六七一三八三八四九四七二书于初商次商积之下相减余一七七六四四六五三三五九七二乃以四○六六七一三八三八四九四七二格内三商廉法八七一四三八六七九六七七四除余积一七七六四四六五三三五九七二足二倍即定三商爲二书于三商之位合初商次商共四百二十二尺乘八次得四千二百四十四垓三千五百八十四京九千一百八十五兆四千四百四十九亿五千二百八十二万七千三百九十二尺与原积相减恰尽即定八乘方根爲四百二十二尺也

九乘方

设如有九乘方积八穰七千四百零六垓九千四百四十七京八千零一十四兆三千二百九十亿四千七百二十二万零二百二十四尺开九乘方问每一根之数几何

法列方积八穰七千四百零六垓九千四百四十七京八千零一十四兆三千二百九十亿四千七百二十二万零二百二十四尺自末位起算每方积十位定方根一位故隔九位作记乃于四尺上定单位二百亿尺上定十位六垓尺上定百位其八穰七千四百零六垓尺爲初商积与三百乘九次之数相准即定初商爲三百尺书于方积六垓尺之上而以三百尺乘九次之五穰九千零四十九垓尺书于初商积之下相减余二穰八千三百五十七垓尺爰以方根第二位积九千四百四十七京八千零一十四兆三千二百亿尺续书于后共二穰八千三百五十七垓九千四百四十七京八千零一十四兆三千二百亿尺爲次商廉隅之共积而以初商之三百尺乘八次得一百九十六垓八千三百京尺又以十因之得一千九百六十八垓三千京尺爲次商廉法以除次商积足十倍即定次商爲一十尺书于方积二百亿尺之上合初商共三百一十尺乘九次得八穰一千九百六十二垓八千二百八十六京九千八百零八兆零一百亿尺与原积相减余五千四百四十四垓一千一百六十京八千二百零六兆三千一百亿尺爰以方根第三位积九十亿四千七百二十二万零二百二十四尺续书于后共五千四百四十四垓一千一百六十京八千二百零六兆三千一百九十亿四千七百二十二万零二百二十四尺爲三商廉隅之共积而以初商次商之三百一十尺乘八次得二百六十四垓三千九百六十二京二千一百六十兆六千七百一十亿尺十因之得二千六百四十三垓九千六百二十二京一千六百零六兆七千一百亿尺爲三商廉法以除三商积足二倍即定三商爲二尺书于方积四尺之上合初商次商共三百一十二尺乘九次得八穰七千四百零六垓九千四百四十七京八千零一十四兆三千二百九十亿四千七百二十二万零二百二十四尺与原积相减恰尽是开得三百一十二尺爲九乘方每一根之数也葢九乘方之本法有十八乘廉四十五七乘廉一百二十六乘廉二百一十五乘廉二百五十二四乘廉二百一十三乘廉一百二十自乘再乘廉四十五自乘廉十长廉一小隅既得初商乃以初商乘八次十因之得十八乘廉爲法除余积得次商以初商乘七次与次商相乘四十五乘之爲四十五七乘廉以初商乘六次次商自乘两数相乘一百二十乘之爲一百二十六乘廉以初商乘五次次商自乘再乘两数相乘二百一十乘之爲二百一十五乘廉以初商乘四次次商乘三次两数相乘二百五十二乘之爲二百五十二四乘廉以初商乘三次次商乘四次两数相乘二百一十乘之爲二百一十三乘廉以初商自乘再乘次商乗五次两数相乘一百二十乘之爲一百二十自乘再乘廉以初商自乘次商乘六次两数相乘四十五乘之爲四十五自乘廉以次商乘七次与初商相乘十因之爲十长廉以次商乘八次爲一小隅合十八乘廉四十五七乘廉一百二十六乘廉二百一十五乘廉二百五十二四乘廉二百一十三乘廉一百二十自乘再乘廉四十五自乘廉十长廉一小隅以次商乘之爲次商廉隅之共积今此法得次商之后合初商乘九次即得应减之积也又法用开平方开四乘方法开之初以原积八穰七千四百零六垓九千四百四十七京八千零一十四兆三千二百九十亿四千七百二十二万零二百二十四尺开平方得二兆九千五百六十四亿六千六百五十五万二千八百三十二尺又以二兆九千五百六十四亿六千六百五十五万二千八百三十二尺开四乘方得三百一十二尺即九乘方每一根之数也

又用表开法列积八穰七千四百零六垓九千四百四十七京八千零一十四兆三千二百九十亿四千七百二十二万零二百二十四尺自末位起算隔九位作记定位同前乃截方根第二位以前积八七四○六九四四七八○一四三二爲初商次商之积于表中取比此数相近畧小之数爲八一九六二八二八六九八○八○一【即初商次商乘九次之数】其所对初商根爲三次商根爲一即将三一书于初商次商之位而以八一九六二八二八六九八○八○一书于初商次商积之下相减余五四四四一一六○八二○六三一乃以八一九六二八二八六九八○八○一格内三商廉法二六四三九六二二一六○六七一除余积五四四四一一六○八二○六三一足二倍即定三商爲二书于三商之位合初商次商共三百一十二尺乘九次得八穰七千四百零六垓九千四百四十七京八千零一十四兆三千二百九十亿四千七百二十二万零二百二十四尺与原积相减恰尽即定九乘方根爲三百一十二尺也

诸乘方表

凡表上横行所列自一至九之数为初商根右直行所列自○至九之数为次商根其中每格所列细数二层上层为初商次商积【如立方表第一行第三格上层一七二八即方根一二自乘再乘之数余仿此】下层为三商亷法【如立方表第一行第三格下层四三即三商亷法乃以初商次商两根一二自乘三因截去末一位之数葢方根既有三位则初商为百次商为十以一百二十自乘三因得四三二○○为亷法除实至三商本位止今防法止用次商余积求三商不加三商本位之积其初商仍作十用以十二自乘三因得四三二仍比次商余积多一位故截去末一位止用四三为亷法除实则法实尾位均齐定位始无误余仿此】用表之法具见设如立方表

<子部,天文算法类,算书之属,御制数理精蕴,下编卷三十二>

<子部,天文算法类,算书之属,御制数理精蕴,下编卷三十二>

<子部,天文算法类,算书之属,御制数理精蕴,下编卷三十二>

<子部,天文算法类,算书之属,御制数理精蕴,下编卷三十二>

<子部,天文算法类,算书之属,御制数理精蕴,下编卷三十二>

<子部,天文算法类,算书之属,御制数理精蕴,下编卷三十二>

御制数理精蕴下编卷三十二

<子部,天文算法类,算书之属,御制数理精蕴>

钦定四库全书

御制数理精蕴下编卷三十三

末部三

借根方比例【带纵平方带纵立方三乘方四乘方五乘方附】

带纵平方

借根方比例开带纵平方其以长方之积用长阔之较或和而求长阔之数皆与常法同但不立和纵较纵之名惟有多根少根之号而毎根之数或爲长方之阔或爲长方之长错综其名有十二种推究其实总不出和较之两端如云一平方多防根与几真数等或几根多一平方与几真数等或一平方与几真数少几根等或几根与几真数少一平方等此四者根皆较纵而其毎根之数皆长方之阔也如云一平方少几根与几真数等或一平方少几眞数与几根等或一平方与几真数多几根等或一平方与几根多几眞数等此四者根亦皆较纵而其每根之数则皆长方之长也如云一平方多几真数与几根等或几眞数多一平方与几根等或几真数与几根少一平方等或一平方与几根少几眞数等此四者根皆和纵而其毎根之数或爲长方之长或爲长方之阔也要之所谓一平方者即一正方而多几根少几根即变正方而爲长方其眞数比平方多根者其毎根爲阔眞数比平方少根者其每根爲长二者皆较纵惟眞数比根少平方者则爲和纵也至于开之之法皆以眞数爲长方积以根数爲纵【即以根数作眞数用如三根即作三眞数五根即作五真数之类解见设如】依面部带纵平方法开之有较纵者先求和有和纵者先求较其根爲长方之阔者以和较相减折半而得每根之数【用半和半较立法者则相减即得根数不用折半】其根爲长方之长者以和较相加折半而得每根之数也【用半和半较立法者则相加即得根数不用折半】俱详设如设如有一平方多二根与二十四尺相等问每一根之数几何

法以二十四尺爲长方积二根爲纵多二尺用带纵较数开平方法算之将积数四因加纵多自乘之数得一百尺开平方得十尺爲和减较二尺余八尺折半得四尺爲一根之数即长方之阔加较二尺得六尺即长方之长也如图甲乙丙丁长方形共积二十四尺甲乙四尺爲一根爲阔甲丁六尺爲长戊丁二尺爲纵多甲乙己戊爲一平方戊己丙丁爲二根是甲乙丙丁二十四尺内有甲乙己戊之一平方又有戊己丙丁之二根故云一平方多二根与二十四尺相等也若以积计之则积之多于平方者爲戊己丙丁之二根若以边计之则长多于阔者爲戊丁之二尺故以二根即作二尺爲纵多也此法错综其名则爲四种一平方多二根与二十四尺相等一也如二根多一平方亦必与二十四尺相等又一也若于一平方多二根与二十四尺各减去二根则爲一平方与二十四尺少二根相等此又其一也【甲乙丙丁二十四尺内减去戊己丙丁二根余甲乙己戊一平方故爲一平方与二十四尺少二根相等也】又如一平方多二根与二十四尺各减去一平方则爲二根与二十四尺少一平方相等此又其一也【甲乙丙丁二十四尺内减去甲乙己戊一平方余戊己丙丁二根故爲二根与二十四尺少一平方相等也】此四者名虽不同合而观之总爲眞数比一正方多根数故知其爲较纵而每根之数爲阔也

设如有一平方少四根与四十五尺相等问每一根之数几何

法以四十五尺爲长方积四根爲纵多四尺用带纵较数开平方法算之将积数四因加纵多自乘之数得一百九十六尺开平方得十四尺爲和加较四尺得十八尺折半得九尺爲一根之数即长方之长减较四尺得五尺即长方之阔也如图甲乙丙丁长方形共积四十五尺甲乙九尺爲一根爲长甲丁五尺爲阔甲戊与甲乙等丁戊四尺爲纵甲乙己戊爲一平方丁丙己戊爲四根于甲乙己戊平方内减去丁丙己戊之四根则余甲乙丙丁四十五尺故云一平方少四根与四十五尺相等也若以积计之则积之少于平方者爲丁丙己戊之四根若以边计之则阔少于长者爲丁戊之四尺故以四根作四尺爲纵多也此法错综其名亦爲四种一平方少四根与四十五尺相等一也如一平方少四十五尺亦必与四根相等又一也若于一平方少四根与四十五尺各加四根则爲一平方与四十五尺多四根相等此又其一也【甲乙丙丁四十五尺加丁丙己戊四根成甲乙己戊一平方故爲一平方与四十五尺多四根相等也】如一平方亦必与四根多四十五尺相等此又其一也此四者名虽不同合而观之总爲真数比一正方少根数故知其爲较纵而其每根之数爲长也

设如有一平方多三十六尺与十三根相等问每一根之数几何

法以三十六尺爲长方积十三根爲和十三尺用带纵和数开平方法算之将积数四因与和自乘数相减余二十五尺开平方得五尺爲较与和十三尺相减余八尺折半得四尺爲一根之数即长方之阔加较五尺得九

打 印】 【来源:读书之家-dushuzhijia.com】