御制数理精蕴 - 第2部分

作者:【暂缺】 【297,284】字 目 录

十根与三万三千一百五十二尺相等问每一根之数几何

法列原积三万三千一百五十二尺按立方法作记于二尺上定单位三千尺上定十位其三万三千尺爲初商积与三十自乘再乘之数相准即定初商爲三十尺书于原积三千尺之上而以初商三十尺自乘再乘之二万七千尺爲一立方积又以初商三十尺自乘之九百尺爲多一平方积又以初商之三十尺二十乘之得六百尺爲少二十根之共积于立方积内加多一平方积得二万七千九百尺又减去少二十根之共积余二万七千三百尺书于原积之下相减余五千八百五十二尺爲次商积而以初商之三十尺自乘三因之得二千七百尺爲一立方廉又以初商之三十尺倍之得六十尺爲一平方廉与立方廉相加得二千七百六十尺又减去根数二十余二千七百四十尺爲次商廉法以除次商积足二倍即定次商爲二尺书于原积二尺之上合初商共三十二尺自乘再乘得三万二千七百六十八尺爲一立方积又以三十二尺自乘之一千零二十四尺爲多一平方积又以三十二尺二十乘之得六百四十尺爲少二十根之共积于一立方积内加多一平方积得三万三千七百九十二尺又减去少二十根之共积得三万三千一百五十二尺书于原积之下相减恰尽是开得三十二尺爲每一根之数也此法以积计之爲一正方体多一平方复少二十根之数以边计之则所得每根之数即正方体之每一边亦即平方之每一边因正方体之外多一平方又少二十根故成磬折体而非正方体也

设如有一立方少三平方多二根与一万二千一百四十四尺相等问每一根之数几何

法列原积一万二千一百四十四尺按立方法作记于四尺上定单位二千尺上定十位其一万二千尺爲初商积与二十自乘再乘之数相凖即定初商爲二十尺书于原积二千尺之上而以初商二十尺自乘再乘之八千尺爲一立方积又以初商二十尺自乘之四百尺三因之得一千二百尺爲少三平方之共积又以初商之二十尺二因之得四十尺爲多二根之共积于立方积内减去少三平方之共积余六千八百尺又加入多二根之共积得六千八百四十尺书于原积之下相减余五千三百零四尺爲次商积而以初商之二十尺自乘三因之得一千二百尺爲一立方廉又以初商之二十尺倍之得四十尺三因之得一百二十尺爲三平方廉与立方廉相减余一千零八十尺又加入根数二得一千零八十二尺爲次商廉法以除次商积足四倍即定次商爲四尺书于原积四尺之上合初商共二十四尺自乘再乘得一万三千八百二十四尺爲一立方积又以二十四尺自乘之五百七十六尺三因之得一千七百二十八尺爲少三平方之共积又以二十四尺二因之得四十八尺爲多二根之共积于立方积内减去三平方之共积余一万二千零九十六尺又加入多二根之共积得一万二千一百四十四尺书于原积之下相减恰尽是开得二十四尺爲毎一根之数也此法以积计之爲一正方体少三平方复多二根之数以边计之则所得每根之数即正方体之每一边亦即平方之每一边因正方体之内少三平方又多二根故成磬折体而非正方体也

设如有四十平方少一立方与五千六百二十五尺相等问每一根之数几何

法以四十平方少一立方与五千六百二十五尺俱以四十除之得一平方少四十分立方之一与一百四十尺六十二寸五十分相等乃列一百四十尺六十二寸五十分爲归除所得之积按平方法作记于空尺上定单位一百尺上定十位其一百尺爲初商积与十尺自乘之数相合即定初商爲十尺书于所得积一百尺之上而以初商十尺自乘之一百尺爲一平方积再乘得一千尺爲一立方积以四十除之得二十五尺爲少四十分立方之一之积与一平方积相减余七十五尺书于所得积之下相减余六十五尺六十二寸五十分爲次商积而以初商之一十尺倍之得二十尺爲一平方廉又以初商之十尺自乘三因之得三百尺爲一立方廉以四十除之得七尺五寸爲四十分立方之一之廉与平方廉相减余十二尺五寸爲次商廉法以除次商积足五倍即定次商爲五尺书于所得积空尺之上合初商共十五尺自乘得二百二十五尺爲一平方积再乘得三千三百七十五尺爲一立方积以四十除之得八十四尺三十七寸五十分爲四十分立方之一之积与一平方积相减余一百四十尺六十二寸五十分书于所得积之下相减恰尽乃以一平方积与四十相乘得九千尺爲四十平方积内减去一立方积余五千六百二十五尺与原积相合是开得一十五尺爲每一根之数也此法以积计之爲四十平方少一正方体之数以边计之则所得每根之数即平方之每一边亦即正方体之每一边因四十平方内少十五平方之一正方体【每边爲十五尺故十五平方爲一正方体也】余二十五平方爲长方体【其寛即一根爲十五尺其高亦十五尺其长爲二十五尺也】而非正方体也

设如有五百平方少一立方与二十七万四千一百七十六尺相等问每一根之数几何

法以五百平方少一立方与二十七万四千一百七十六尺俱以五百除之得一平方少五百分立方之一与五百四十八尺三十五寸二十分相等乃列五百四十八尺三十五寸二十分爲归除所得之积按平方法作记于八尺上定单位五百尺上定十位其五百尺爲初商积与二十自乘之数相准即定初商爲二十尺书于所得积五百尺之上而以初商二十尺自乘之四百尺爲一平方积再乘得八千尺爲一立方积以五百除之得十六尺爲少五百分立方之一之积与平方积相减余三百八十四尺书于所得积之下相减余一百六十四尺三十五寸二十分爲次商积而以初商之二十尺倍之得四十尺爲一平方廉又以初商之二十尺自乘三因之得一千二百尺爲一立方廉以五百除之得二尺四寸爲五百分立方之一之廉与平方廉相减得三十七尺六寸爲次商廉法以除次商积足四倍即定次商爲四尺书于所得积八尺之上合初商共二十四尺自乘得五百七十六尺爲一平方积再乘得一万三千八百二十四尺爲一立方积以五百除之得二十七尺六十四寸八十分爲少五百分立方之一之积与平方积相减余五百四十八尺三十五寸二十分书于所得积之下相减恰尽乃以一平方积与五百相乘得二十八万八千尺爲五百平方积内减去一立方积余二十七万四千一百七十六尺与原积相合是开得二十四尺爲每一根之数也此法以积计之爲五百平方少一正方体以边计之则所得每根之数即平方之每一边亦即正方体之每一边因五百平方内少二十四平方之一正方体【每边爲二十四尺故二十四平方即一正方体也】余四百七十六平方爲长方体【其寛即一根爲二十四尺其高亦爲二十四尺其长爲四百七十六尺也】而非正方体也

设如有一三乘方多二平方与二万一千零二十四尺相等问每一根之数几何

法列原积二万一千零二十四尺按三乘方法作记于四尺上定单位二万尺上定十位其二万尺爲初商积与十尺乘三次之数相准即定初商爲十尺书于原积二万尺之上而以初商十尺乘三次之一万尺爲一三乘方积又以初商十尺自乘之一百尺二因之得二百尺爲多二平方之共积与三乘方积相加得一万零二百尺书于原积之下相减余一万零八百二十四尺爲次商积而以初商之十尺再乘四因之得四千尺爲三乘方廉又以初商之十尺倍之得二十尺二因之得四十尺爲多二平方之廉与三乘方廉相加得四千零四十尺爲次商廉法以除次商积足二倍即定次商爲二尺书于原积四尺之上合初商共十二尺乘三次得二万零七百三十六尺爲一三乘方积又以十二尺自乘之一百四十四尺二因之得二百八十八尺爲多二平方之共积与三乘方积相加得二万一千零二十四尺书于原积之下相减恰尽是开得一十二尺爲每一根之数也

又法用带纵平方及平方两次开之将原积二万一千零二十四尺爲长方积以多二平方作二尺爲纵多折半得一尺爲半较自乘仍得一尺与积相加得二万一千零二十五尺开平方得一百四十五尺爲半和内减半较一尺【凡多平方者即减半较如少平方者则加半较】余一百四十四尺爲正方积复开平方得十二尺即每一根之数也葢三乘方多平方与方根自乘爲阔加多平方数爲长所作之长方积等故用带纵较数开平方法开之得数复开平方即得每一根之数也

设如有一千平方少一三乘方与一十二万三千二百六十四尺相等问每一根之数几何

法以一千平方少一三乘方与一十二万三千二百六十四尺俱以一千除之得一平方少一千分三乘方之一与一百二十三尺二十六寸四十分相等乃列一百二十三尺二十六寸四十分爲归除所得之积按平方法作记于三尺上定单位一百尺上定十位其一百尺爲初商积与十尺自乘之数相合即定初商爲十尺书于所得积一百尺之上而以初商十尺自乘之一百尺爲一平方积又以初商之十尺乘三次得一万尺爲一三乘方积以一千除之得一十尺爲千分三乘方之一之积与一平方积相减余九十尺书于所得积之下相减余三十三尺二十六寸四十分爲次商积而以初商之十尺倍之得二十尺爲一平方廉又以初商之十尺自乘再乘四因之得四千尺爲一三乘方廉以一千除之得四尺爲千分三乘方之一之廉与平方廉相减余一十六尺爲次商廉法以除次商积足二倍即定次商爲二尺书于所得积三尺之上合初商共十二尺自乘得一百四十四尺爲一平方积又以十二尺乘三次得二万零七百三十六尺爲一三乘方积以一千除之得二十尺零七十三寸六十分与一平方积相减余一百二十三尺二十六寸四十分书于所得积之下相减恰尽乃以一平方积与一千相乘得一十四万四千尺爲一千平方积内减去一三乘方积余一十二万三千二百六十四尺与原积相合是开得一十二尺爲每一根之数也

又法用带纵平方及平方两次开之将原积一十二万三千二百六十四尺爲长方积以一千平方作一千尺爲和折半得五百尺爲半和自乘得二十五万尺与积相减余十二万六千七百三十六尺开平方得三百五十六尺爲半较与半和相减余一百四十四尺爲正方积复开平方得一十二尺即每一根之数也葢平方少三乘方与方根自乘爲阔与平方数相减爲长所作之长方积等故用带纵和数开平方法开之得数复开平方即得每一根之数也

设如有一四乘方多二立方与七百九十九万零二百七十二尺相等问每一根之数几何

法列原积七百九十九万零二百七十二尺按四乘方法作记于二尺上定单位九十万尺上定十位其七百九十万尺爲初商积与二十乘四次之数相准即定初商爲二十尺书于原积九十万尺之上而以初商二十尺乘四次之三百二十万尺爲一四乘方积又以初商二十尺自乘再乘之八千尺二因之得一万六千尺爲多二立方之共积与四乘方积相加得三百二十一万六千尺书于原积之下相减余四百七十七万四千二百七十二尺爲次商积而以初商之二十尺乘三次五因之得八十万尺爲一四乘方廉又以初商之二十尺自乘三因之得一千二百尺又二因之得二千四百尺爲多二立方之廉与四乘方廉相加得八十万零二千四百尺爲次商廉法以除次商积足五倍因取略小之数爲四尺书于原积二尺之上合初商共二十四尺乘四次得七百九十六万二千六百二十四尺爲一四乘方积又以二十四尺自乘再乘之一万三千八百二十四尺二因之得二万七千六百四十八尺爲多二立方之共积与四乘方积相加得七百九十九万零二百七十二尺书于原积之下相减恰尽是开得二十四尺爲每一根之数也葢四乘方多立方之数不与平方立方之数相合故不能以平方立方之法开也

设如有二千立方少一四乘方与一千九百六十八万五千三百七十六尺相等问每一根之数几何法以二千立方少一四乘方与一千九百六十八万五千三百七十六尺俱以二千除之得一立方少二千分四乘方之一与九千八百四十二尺六百八十八寸相等乃列九千八百四十二尺六百八十八寸爲归除所得之积按立方法作记于二尺上定单位九千尺上定十位其九千尺爲初商积与二十自乘再乘之数相准即定初商爲二十尺书于所得积九千尺之上而以初商二十尺自乘再乘之八千尺爲一立方积又以初商之二十尺乘四次得三百二十万尺爲一四乘方积以二千除之得一千六百尺爲二千分四乘方之一之积与一立方积相减余六千四百尺书于所得积之下相减余三千四百四十二尺六百八十八寸爲次商积而以初商之二十尺自乘三因之得一千二百尺爲一立方廉又以初商之二十尺乘三次五因之得八十万尺爲一四乘方廉以二千除之得四百尺爲二千分四乘方之一之廉与立方廉相减余八百尺爲次商廉法以除次商积足四倍即定次商爲四尺书于所得积二尺之上合初商共二十四尺自乘再乘得一万三千八百二十四尺爲一立方积又以二十四尺乘四次得七百九十六万二千六百二十四尺爲一四乘方积以二千除之得三千九百八十一尺三百一十二寸与一立方积相减余九千八百四十二尺六百八十八寸书于所得积之下相减恰尽乃以一立方积与二千相乘得二千七百六十四万八千尺爲二千立方积内减去一四乘

打 印】 【来源:读书之家-dushuzhijia.com】