为半径甲戊庚与甲乙丙两勾股形为同式形故甲乙边与丙乙边之比同于甲戊半径与庚戊正切之比为相当比例四率先求丙角则如丙丁戊一象限己丁弧为丙角三十度之弧辛丁为丙角之正切丙丁为半径丙丁辛与丙乙甲两勾股形为同式形故丙乙边与甲乙边之比同于丙丁半径与辛丁正切之比为相当比例四率也
又法以甲乙边二十丈与丙乙边三十四丈六尺四寸一分相加得五十四丈六尺四寸一分为两边之和为一率又以甲乙边二十丈与丙乙边三十四丈六尺四寸一分相减余一十四丈六尺四寸一分为两边之较为二率以乙角之外角九十度折半得四十五度为半外角其正切十万为三率【四十五度之正切与半径十万等】求得四率二十六万七千九百四十八为半较角之正切捡八线表得十五度为半较角与半外角四十五度相减余三十度即丙角之度如以半较角十五度与半外角四十五度相加得六十度即甲角之度也如图甲乙丙直角三角形以乙直角为心甲乙小边为半径作一甲戊丁圜截丙乙大边于戊将丙乙引长至圜界丁则丁乙戊乙俱为半径与甲乙等自丁至丙即两边之和自戊至丙即两边之较甲乙丁角即乙角之外角试自甲至戊作一甲戊线则成甲乙戊直角三角形其乙甲戊与乙戊甲二角相并与甲乙丁外角度等今折半用其正切即如用甲戊乙角之正切又心角与边角度等其切线亦等故自甲至丁作一丁甲线即甲戊丁角之正切又戊甲丙角即甲角大于甲戊乙角之较又即丙角小于甲戊乙角之较故于圜界戊至甲丙边己作己戊线与甲丁线平行即戊甲己角之正切且丙丁甲三角形与丙戊己三角形为同式形故两边之和丙丁与甲戊丁半外角切线甲丁之比即同于两边之较丙戊与半较角切线己戊之比为相当比例四率也
设如甲乙丙直角三角形乙角为直角九十度知甲乙边六十尺丙乙边三十二尺求甲丙边几何法以甲乙边六十尺为一率丙乙边三十二尺为二率半径十万为三率求得四率五万三千三百三十三为甲角之正切捡八线表得二十八度零四分即甲角之度【如用丙乙边作一率甲乙边作二率即先得丙角度】乃以甲角为对所知之角其正四万七千零五十为一率乙角为对所求之角其正即半径十万为二率丙乙边为所知之边其数三十二尺为三率求得四率六十八尺零一分二厘有余即甲丙为所求之边也又既得甲角之后用割线法则以半径为一率甲角之正割为二率甲乙边为三率求得四率即甲丙为所求之边也或得丙角则用丙角之正割为二率丙乙边为三率亦得甲丙边若得丙角仍用甲乙边为三率则用丙角余割【即甲角之正割】为二率而亦得甲丙边也
又法用勾股求以甲乙为股丙乙为勾求得即甲丙边也法已载于勾股集中
设如甲乙丙直角三角形乙角为直角九十度知甲丙边一百零二丈二尺丙乙边四十八丈求甲角丙角各几何
法以甲丙边为对所知之边其数一百零二丈二尺为一率丙乙边为对所求之边其数四十八丈为二率乙角为所知之角其正即半径十万为三率求得四率四万六千九百六十六为甲角之正捡八线表得二十八度零一分即甲角之度也甲角之余即丙角之正如捡八线表余数得六十一度五十九分即丙角之度也如甲丁戊一象限己庚爲甲角正辛己与甲庚等为甲角之余即丙角之正甲庚己与甲乙丙両勾股形为同式形故甲丙边与丙乙边之比同于甲己半径与己庚正之比为相当比例四率也又法以丙乙边四十八丈为一率甲丙边一百零二丈二尺为二率半径十万为三率求得四率二十一万二千九百一十六为丙角之正割捡八线表得六十一度五十九分即丙角之度也其丙角之余割即甲角之正割如捡余割数得二十八度零一分即甲角之度也如丙丁戊一象限丙戊为半径己戊为丙角之正切己丙为丙角之正割甲乙丙与己戊丙两勾股形为同式形故丙乙边与甲丙边之比同与丙戊半径与己丙正割之比为相当比例四率也
设如甲乙丙锐角三角形知乙丙边三十二丈乙角六十度丙角四十六度求甲乙边甲丙边各几何法以乙角六十度与丙角四十六度相加得一百零六度与半圜一百八十度相减余七十四度为甲角求甲丙边则以甲角为对所知之角其正九万六千一百二十六为一率以乙角为对所求之角其正八万六千六百零三为二率乙丙边为所知之边其数三十二丈为三率求得四率二十八丈八尺二寸九分有余即甲丙为所求之一边也求甲乙边则仍以甲角为对所知之角其正九万六千一百二十六为一率而以丙角为对所求之角其正七万一千九百三十四为二率仍以乙丙边为所知之边其数三十二丈为三率求得四率二十三丈九尺四寸六分有余即甲乙为所求之又一边也如图甲乙丙三角形作含三角形之圜则每界角各对一弧试自圜心丁作三角形各边之垂线即将每角所对之弧平分一半各成两心角其每一心角与相当各界角之度等【见几何原本四卷第十三节】是以乙角所对甲丙弧原系一百二十度今为丁庚癸垂线所平分各为六十度一为甲丁癸一为癸丁丙皆与乙角原度等丙角所对甲乙弧原系九十二度今为丁戊辛垂线所平分各为四十六度一为甲丁辛一为辛丁乙皆与丙角原度等甲角所对乙丙弧原系一百四十八度今为丁己壬垂线所平分各为七十四度一为乙丁壬一为壬丁丙皆与甲角原度等乙己为乙丁壬角之正己丙为壬丁丙角之正亦即甲角之正甲庚为甲丁癸角之正庚丙为癸丁丙角之正亦即乙角之正甲戊为甲丁辛角之正
【打 印】 【来源:读书之家-dushuzhijia.com】