之比例亦若第一甲线与
第三丙线也皆再加之比例故也
二十题
以三角形分相似多邉形则分数必等而相当各三角形各相似其各相似两三角形之比例若两元形其元形之比例为两相似邉再加之比例
先解曰此甲乙丙丁戊彼己庚辛壬癸两多邉形其相当各角俱等而等
角旁各两邉之比例各等题言各以角形分之其角形之分数必等而相当之各角各相似
次解曰各相当角形之比例若两元形
论曰此角形之比例既若彼角形则此各角形并必若彼各角形并是此全形若彼全形矣
后解曰两元形之比例为两相似邉再加之比例论曰两分形之比例既若两元形而两分形之比例为两相似邉再加之比例则两元形亦为相似邉再加之比例
増题甲直线倍大于乙直线则甲直线上方形与乙直线上方形为四倍大之比例若甲方形与乙方形为四倍大之比例则甲线必倍大于乙线何者相似两形之比例为
其邉再加之比例故也
糸依此题可显三直线为连比例则第一线上多邉形与第二线上相似多邉形若第一线与第三线之比例
二十一题
两直线形各与他直线形相似则两形自相似
二十二题
四直线为断比例则两比例线上各任作自相似之直线形亦为断比例两比例线上各任作自相似之直线形为断比例则四直线亦为断比例
解曰甲乙丙丁戊己庚辛四线为断比例谓甲乙与丙丁若戊己与庚辛也于甲乙丙丁线上任作两角形于戊己庚辛线上任作两方形题言四形亦为断比例谓甲
乙壬与丙丁癸若戊丑与庚卯又言若四形为断比例则甲乙丙丁戊己庚辛四线亦为断例何者角形与角形方形与方形皆为其相似邉再加之比例故也
二十三题
等角两平行方形之比例以两形之各两邉两比例相结
解曰甲丙丙己两平行方形两丙角等题言两形之比例以各等角旁各两邉之比例相结者谓两比例之前率在此形两比例之后率在彼形如甲丙与丙己之比例以乙丙与丙庚偕丁丙与丙戊相结也或以乙丙
与丙戊偕丁丙与丙庚相结也
论曰试以两等角相聨令乙丙丙庚丁丙丙戊各成直线次引长甲丁己庚遇于辛次任作一壬线次以乙丙丙庚壬三线求断比例之末率线为癸【本巻十二】末以丁丙丙戊癸三线求断比例之末率线为子其甲丙丙辛两形等髙既若乙丙丙庚两底即若壬与癸也依显丙辛丙己两形亦若癸与子也平之即丙甲与丙己若壬与子也【五巻二十】若以乙丙与丙戊偕丁丙
与丙庚相结以乙丙丙戊聨成一线依上推显注曰乙丙与丙庚丁丙与丙戊二比例既不同理又异中率故借壬与癸癸与子同中率而不同理之两比例以为象令相象之丙庚丁丙亦化两率为一率为乙丙丙戊首尾两率之枢纽因以两比例相结所以通比例之穷也自三以上仿此二十四题
平行方形之两角线形自相似亦与全形相似
解曰甲乙丙丁平行方形作甲丙对角线任作戊己庚辛两线与丁丙乙丙平行交角线于壬题言戊庚己辛两角线方形自
相似亦与全形相似
二十五题
两直线形求作他直线形与一形相似与一形相等法曰甲乙两直线形求作一形与甲相似与乙相等先于甲邉丙丁上作丙戊方形与甲等【一巻四四四五】次依丁戊邉作丁辛方形与乙等次作一壬癸线为丙丁丁庚之中率【本巻十二】末于壬癸作子形与甲
相似即与乙相等
论曰丙丁壬癸丁庚三线既为连比例则一丙丁与三丁庚若一丙丁上之甲与二壬癸之上之子相似两形
之比例又若丙戊与丁辛等髙两形之比例则丙戊与丁辛若甲与子矣夫丙戊丁辛元若甲与乙今又若甲与子是乙与子等也
二十六题
平行方形之内减去一平行方形其减形与元形相似而体势等又一角同则减形必依元形之对角线解曰乙丁平行方形内减戊己平行方形元形与减形相似而体势等又同甲角题
言戊己形必依乙丁形之对角线
二十七题
凡依直线之有阙平行方形不满线者其阙形与半线之上阙形相似而体势等则半线上似阙形之有阙依形必大于此有阙依形
解曰甲乙线平分于丙于甲丙半线上任作甲丁形为甲丙半线上有阙依形次作甲戊满元线形而丙戊为丙乙半线上阙形次作丁乙角线末任作己壬癸子两线与甲乙乙戊平行交角线于庚即得甲庚为甲乙
线上有阙依形而癸壬为阙形癸壬阙形既依乙丁角线则与丙戊阙形相似而体势等题言甲丁有阙依形必大于甲庚有阙依形
论曰己丁丁壬两形同髙等底即两形等【一巻三六】而庚戊为丁壬之分则丁壬大于庚戊较余一庚丁形其大于丙庚亦如之【丙庚庚戊两余方相等故】即等丁壬之己丁形大于丙庚亦较余一庚丁形也次毎加一丙己形则甲丁必大于甲庚矣
又解曰若庚防在丙戊形之外即引乙丁角线至庚作辛丑与癸戊平行次引甲癸乙癸聨之末作庚己与辛甲平行
得甲庚为甲乙线上有阙依形而己丑为阙形与丙戊阙形相似而体势等题言甲丁有阙依形亦大于甲庚有阙依形
论曰试引丙丁线至子即辛子子丑两线等而辛丁丁丑两形亦等其丁丑己丁两余方亦等即己丁与辛丁亦等夫辛丁大于辛壬既较余一庚丁形则己丁之大于辛壬亦较余一庚丁形也此两率毎加一甲壬形则甲丁大于甲庚者亦较余一庚丁形矣依显不论庚防在丙戊形内形外凡依角线作阙形而与丙戊相似者其有阙依形俱小于甲丁以必有庚丁之较故也
二十八题
一直线求作依线之有阙方形与所设直线形等而其阙形与所设方形相似其所设直线形不大于半线上所作方形与所设方形相似者
法曰甲乙线求作依线之有阙方形与丙等而其阙形与丁相似先平分甲乙于戊次于戊乙半线上作戊庚形与丁相似次作甲庚满线形若甲己形与丙等即得所求矣若甲己大于丙【若甲己小于丙即不
可作】即等甲己之戊庚亦大于丙也
则求戊庚大于丙之较为壬【一巻四五
増】即作癸丑形与壬等而与戊庚
相似次截取己巳己卯与癸子癸
寅等而作己卯方形必与癸丑相等相似而又与戊庚相似次引己辰抵元线又引卯辰两端作午未线即甲辰为甲乙线上有阙依形与丙等而乙辰阙形与丁相似
论曰辰庚与辰戊两余方既等毎加一乙辰角线形即乙己与戊午亦等而与等戊午之戊未亦等乙己与戊未既等又毎加一戊辰形即甲辰与申辰酉磬折形等矣夫磬折形为戊庚之分而戊庚与丙及癸丑并等戊庚既截去等癸丑之卯己则所余磬折形与丙等矣即甲辰亦与丙等
二十九题
一直线求作依线之余方形与所设形等而其余形与所设方形相似
法曰甲乙线求作依线余
方形与丙等而其余形与丁
相似先平分甲乙于戊于戊
乙上作戊庚方形与丁相似
次别作辛方形与丙及戊庚
并等又别作癸丑方形与辛等又与丁相似癸丑既与辛等即大于戊庚次引己戊至卯与壬丑等引己庚至寅与壬癸等而作寅卯方形即卯寅与癸丑等又与戊庚相似次引甲乙至己引庚乙至午引午卯至未末作甲未线与己卯平行即得甲辰余方形依甲乙线与丙等而己午为余形与戊庚相似即与丁相似
论曰甲卯戊午既等戊午与乙寅两余方又等是甲卯与乙寅亦等矣而毎加一卯己形则甲辰与申乙酉磬折形必亦等夫磬折形元与丙等【卯寅即癸丑元与丙及戊庚并等毎减一戊庚即磬折形与丙等】即甲辰亦与丙等三十题
一直线求理分中末线
法曰甲乙线求理分中末先于元线作甲丙方形次依丁甲邉作丁己余方形与甲丙形等而甲己为余形又与甲丙相似则戊己分甲乙于辛即所求【本卷界三】
论曰丁己与甲丙两形既等毎减一甲戊形即甲己辛丙两形亦等矣此两形之两辛角既等即等角旁之各两邉为互相视之线也【本巻十四】而等戊辛之甲乙线与等辛己之甲辛线其比例若甲辛与辛乙也是甲辛乙为理分中末也
三十一题
三邉直角形之对直角邉上一形与直角旁邉上两形若相似而体势等则一形与两形并等
解曰甲乙丙三边直角形甲为直角各邉上任作直线形相似而体势等题言乙丁形与乙庚丙辛两形并等
论曰甲丙上方形与乙丙上方形之比例若丙辛与乙丁甲乙上方形与乙丙上方形之比例若乙庚与乙丁夫甲丙甲乙上两方形并与乙丙上方形等【一巻四七】则丙辛乙庚两形并亦必与乙丁等増题角形之一邉上形与余邉上相似两形并等则对一邉角必直角
三十二题
两三角形此形之两邉与彼形之两边相似而平置两形成一外角若相似之各两邉各平行则其余各一邉相聨为一直线
解曰甲乙丙丁丙戊两角形其甲乙与甲丙若丁丙与丁戊也试平置两形令相切成一甲丙丁外角而甲乙与丁丙甲丙与丁戊各相似之两邉各平行题言乙丙丙戊为一直线
三十三题
等圜之乗圜分角或在心或在界其各相当两乗圜角之比例皆若所乗两圜分之比例而两分圜形之比例亦若所乗两圜分之比例
解曰甲乙丙戊己庚两圜等其心
为丁为辛两圜各任割一圜分为
乙丙为己庚其乗圜角之在心者为乙丁丙己辛庚在界者为乙甲丙己戊庚题先言乙丙与己庚两圜分之比例若乙丁丙与己辛庚两角次言乙甲丙与己戊庚两角之比例若乙丙与己庚两圜分后言乙丁丁丙两腰偕乙丙圜分乙丁丙分圜形与己辛辛庚两腰偕己庚圜分己辛庚分圜形之比例亦若乙丙与己庚两圜分一系在圜心两角之比例皆若两分圜形
二系在圜心角与四直角之比例若圜心角所乗之圜分与全圜界四直角与在圜心角之比例若全圜界与圜心角所乗之圜分
几何论约巻六
钦定四库全书
几何论约巻末
柘城杜知耕撰
増题【利氏曰丁先生言欧几里得六巻中多研察有比例之线竟不及有比例之面故因其义类増益数题补其未备窦复増一题窃弁于首仍以题防从先生旧题随类附演以广其用俱称今者以别于先生旧増也】
今増题圜与圜为其径与径再加之比例
解曰甲乙丙丁戊己两圜其径甲丙丁己题言两圜为甲丙丁己再加之
比例
一糸全圜与全圜半圜与半圜圜分与相当圜分相为比例皆等皆两径再加之比例故也
二糸三邉直角形对直角边为径所作圜与余两邉为径所作圜并等半圜与两半圜并等圜分与相似两圜分并等
三糸三线为连比例以为径所作三圜亦为连比例推此可求各圜之相与为比例者又可以圜求各圜之相与为比例者
一増题直线形求减所命分其所减所存各作形与所设形相似而体势等
法曰甲形求减三分之一所减所存各作形与乙相似先作丙丁形与甲等与乙相似次依丙戊邉作丙己戊半圜次截丙戊三分之一为戊庚次作己庚为丙戊之垂线次作己丙己戊两线末于己丙己戊
上作己辛己壬两形各与丙丁相似为所求耕曰丙丁己辛己壬三形既相似其比例必若其底与底再加之比例三底线负半圜为三邉直角形其己庚丙己庚戊两分形又与全形相似则丙戊与己丙必若己丙与丙庚是丙戊与丙庚为再加之比例而丙丁己辛两形必若丙戊丙庚两线矣夫丙庚既为丙戊三分之二则辛己亦必丙丁三分之二依显己壬为丙戊三分之一
若所存所减不论何形其法更易如甲形求减三分之一先作乙丙形与甲等
次截乙丁三分之一为丁戊末作己戊即戊丙形为甲三分之一
今附有大圜求减小圜则以圜径当形邉余同前又附依此法可作一方形与初月形等如甲乙丙丁圜有初月戊形附圜界四分之一先作甲乙丙丁内切方形而四平分之其一分即与初月形等何者甲乙丙半圜与甲乙乙丙上两半圜等即戊己半圜为半大圜之半而己庚分圜形亦为半大圜之半是己庚分圜形与戊己半圜等矣此两
率各减一同用之己形所存戊庚两形不亦等乎庚为甲乙丙丁方形四之一故甲乙丙丁方形四分之一之方形与初月形等
二増题两直线形求别作一直线形为连比例法曰甲与乙丙丁两形求别作一形为连比例先作戊己庚形与甲等与乙丙丁相似次以戊己为前率乙丙为中率而求连比例之末率为辛壬【本巻十一】末于辛壬上作辛壬癸形与两形相似为所求
论曰三线既为连比例即其上相似三形亦为连比例【本巻二二】
今附有两圜求别作一圜为连比例即以圜径当形邉法同前
三増题三直线形求别作一直线形为断比例
法曰一甲二乙丁三己庚辛求别
作一形为断比例先作壬子形与
甲等与乙丁相似次以壬癸乙丙
己庚为三率
【打 印】 【来源:读书之家-dushuzhijia.com】