丙角形任于乙丙
邉任取丁防求从丁作一线
分本形为两形其两形之比
例若戊与己先分乙丙于庚令乙庚与庚丙若戊与己如庚丁同防【一圗】即作丁甲线为所求如庚在丁丙之内【二圗】亦作丁甲线从庚作辛庚线与丁甲平行末作丁辛线即分乙丁辛甲无法四邉形与丁丙辛角形其比例若戊与己也如庚在乙丁之内【三圗】亦作丁甲线次从庚作庚辛线与丁甲平行末作辛丁线即分乙丁辛角形与丁丙辛甲无法四邉形其比例若戊与己也【详一巻三十八题第二増】
十四増题一直线形求别作一直线形相似而体势等其比例若所设两几何
法曰甲直线形求别作一形与甲相似令甲与所作形之比例若乙与丙先以乙丙及丁戊三线求断比例之末率为己次求
丁戊及己之中率为庚辛【本卷十二十三】末于庚辛上作壬形与甲相似为所求若先设大甲求作小壬若丙与乙仿此
论曰丁戊庚辛己三线为连比例即一丁戊与三己之比例若一丁戊上之甲与二庚辛上之壬有用法作各形之相加相减者如乙丁方形求别作五倍大方形先引长甲乙至戊令乙戊五倍于乙甲次平分甲戊于己即
以己为心甲为界作甲庚戊半圜次引长乙丙抵圜界于庚即依乙庚线作乙辛方形为所求耕曰甲乙偕戊乙矩内形与乙庚上方形等【三巻三五】矩内形既五倍于乙丁则乙辛方形亦必五倍于乙丁
又丁乙直线形求别作二倍大相似形先引长甲乙至戊令乙戊二倍于甲乙次平分甲戊于己即以己为心甲为界作甲庚戊半圜次引长丙乙抵圜界于庚次于甲戊线截取甲辛与乙庚等从辛作辛壬与乙丙平
行次作甲丙对角线引长之遇辛壬于壬次自壬作壬癸与丙丁平行末引甲丁线聨之成癸辛形即二倍于丁乙而相似
用此法不论何形但两形相似其在庚乙上形皆二倍于在甲乙上形
今附若用前法作圜则乙庚径上圜亦二倍大于甲乙径上圜相加相减仿此
十五増题诸三角形求作内切直角方形
法曰甲乙丙角形求作内切方形先从甲角作甲丁为乙丙之垂线次分甲丁于戊
令甲戊与戊丁若甲丁与乙丙【本巻十増】次从戊作己庚与乙丙平行末自庚自己作庚壬己辛两线各与甲丁平行即得己壬形为所求【若直角钝角则从直角钝角作垂线】
耕曰己庚既与底线平行则甲丁与乙丙若甲戊与己庚今又若甲戊与戊丁是戊丁与己庚等矣而庚壬己辛又各与戊丁等即庚辛为方形又甲乙丙直角三邉形求依乙角作内切方形先分甲乙于丁令甲丁与丁乙若甲
乙与乙丙末从丁作丁戊与乙丙平行从戊作戊己与甲乙平行即得丁己形为所求
耕曰丁戊既与底线平行则甲乙与乙丙若甲丁与丁戊今又若甲丁与丁乙是丁乙与丁戊等矣即乙戊为方形
今附如上三邉直角形依乙角作内切方形其方邉必为甲丁己丙两分余邉之中率何者甲丁与丁戊若戊己与己丙故也【本巻四之糸】
后附【耕自为圗论附之巻末其法似为本书所无其理实函各题之内非能于本书之外别生新义也称后附者以别于丁氏利氏之増题也计十条】
一附直角三邉形以直角旁两邉求对直角邉一巻四十七题第四増言直角三邉形先得两邉可求余一邉皆用筭数相求然亦可比量得之按直角三邉形即算家所谓
勾股也乙丙即甲乙即勾甲丙即股乙丙之大于甲丙为丁丙曰股较乙丙之大于甲乙为乙戊曰勾较甲丙之大于甲乙为丙己曰勾股较凡六线先得两线皆可求余线今先得甲乙甲丙两邉求乙丙先作庚辛壬直角令辛壬与甲乙等辛庚与甲丙等末作庚壬即得乙丙邉之度
二附以对直角邉及直角旁一邉求余邉
先得甲乙乙丙两邉求甲丙先作庚壬与乙丙等平分于癸即以癸为心庚为界作半圜次以壬为心甲乙为
度向圜作短界为辛末作庚辛线为所求【若先得甲丙乙丙两邉求甲乙法同上】
三附以对直角邉与一邉之较及一邉求全邉
先得甲乙邉及甲丙乙
丙之较丙丁求余邉先
作庚辛与丙丁等次作
辛壬垂线与甲乙等次作庚壬次引长庚辛至癸次作庚壬子直角而壬子截庚癸于子末平分庚子于丑即庚丑线与乙丙等辛丑线与甲丙等何也庚癸线既以庚壬子直角线截之则庚辛偕辛子矩内形必与辛壬上方形等【三巻三五】按勾股法依股较为濶作直形而与勾羃等其长必一一股之度故加辛庚折半得乙丙【若先得甲丙及甲乙乙丙之较乙戊求乙丙法同上】
四附以直角旁两邉之较及对直角邉求全邉
先得乙丙及甲乙甲丙之较
己丙先作庚辛与乙丙等次
平分于寅即以寅为心庚为
界向上作短界线次以庚为心己丙为度向上作短界线相交处为丑自丑作辛丑线次作庚辛壬直角令辛壬与辛丑等次作庚壬线末截庚壬于癸令壬癸与丙己等余庚癸平分于子即庚子与甲乙等子壬与甲丙等按勾股法一勾一股并作方形当上方形二而朒一勾股较上方形今庚辛上方形即羃等辛丑之辛壬上方形当一羃而朒一勾股较上方形又庚壬上方形与庚辛辛壬上两方形并等则庚壬一线必为一勾一股之度
五附以直角旁两邉与对直角邉之两较线求各邉先得甲丙乙丙之较丁丙及甲乙乙丙之较乙戊先倍乙戊加丁丙为庚辛壬癸线平分于子即以子为心庚为界作庚丑癸半圜次自壬作垂线抵圜界于丑
即壬丑线加壬癸即与甲乙等加辛壬即与甲丙等加辛癸即与乙丙等按勾股法丁丙偕乙戊矩内形二与戊丁上方形等夫庚壬偕壬癸矩内形即两较矩内形二也而又与壬丑上方形等则壬
丑垂线不与戊丁亦等乎故逓加之得勾股也【若倍丙丁加乙戊所求亦同】
六附又法以方邉角线之较求方邉
先得方邉角线之较甲乙三倍
之为甲乙丙丁线平分于戊即
以戊为心甲为界作甲己丁半
圜自丙作垂线抵圜界于己即己丙线加丙丁为方邉加甲丙为角线试作庚辛为角线上方形次作庚癸壬辛皆为元方形【详二巻十四之増】其子丑与丑壬两线之比例若丑壬与子丑寅卯两线并则丑壬为子丑及子丑寅卯两线并之中率今甲丙倍丙丁而己丙为中率其丙丁与己丙若己丙与甲丙也则己丙丑壬两线必等故加等子丑之丙丁得方邉加等子丑寅卯两线并之甲丙得角线
七附等角两平行方形【不同理】不必借象即以相结如甲丙丙己两平行方形两丙角等即以两角相聨令乙丙丙庚丁丙丙戊各成直线【六巻二三】次引丙庚至壬令丙庚与
丙壬若丁丙与丙戊旋依丁丙丙壬作丁壬形即甲丙与丙己两形之比例若乙丙与丙壬何者丙庚丙壬丁丙丙戊四线既为断比例前后两率矩内形与中两率矩内形必等【六巻十六】即丙己与丁壬等又丁壬与甲丙同丁丙邉即两形等髙两形之比例必若两底乙丙之与丙壬也故甲丙与丙己亦若乙丙与丙壬此以丁丙丙庚为前率之后复为后率之前化二为一作首尾两率之枢纽不必假借他象即以相结若以乙丙与丙戊偕丁丙与丙庚相结仿此
八附又法求理分中末线
设甲乙线求理分中末【详六巻三十】即以甲乙当股次作乙丙勾令勾半于股次以甲丙聨之次截甲丙于丁令丙丁与乙丙等末截甲乙于戊令甲戊
与甲丁等即甲戊乙为理分中末
也何者勾股上两方形并与上
方形等【一巻四七】于方内减去等勾
方之己形所余庚辛壬磬折形必与股方等又甲丁甲戊两线等即辛癸两形亦等再减辛癸两形所余庚壬两形与子丑寅磬折形必亦等又甲乙既倍于内乙即甲卯亦倍于甲辰甲丁甲戊又等则癸子两形并【当甲戊偕丙乙矩内形二】与庚壬两形并【即甲丁偕丙乙矩内形二】亦等矣即癸子两形并与子丑寅磬折形亦等此二率毎减一同用之子形则所余癸与丑寅并安得不等夫癸即甲戊上方形也丑寅即甲乙偕乙戊矩内形也故甲戊乙为理分中末也
九附求于三角形内作一线抵两腰与底线平行又与所设线等
甲乙丙三角形求作一线抵两腰与乙丙平行而与丁线等先作甲戊线次分
于己令甲戊与甲己若乙丙底与丁线末从己作庚辛线与乙丙平行为所求【若设线大于乙丙即不可作】
十附有多线求理分中末
设甲乙丙丁戊己庚辛多线各求理分中末先依前法【八附】分甲乙于壬次
任作甲癸乙角形次从壬作癸壬线次作丙丁戊己庚辛多线令两界各抵腰线而与底线平行【九附】末依癸壬线分丙丁于子分戊己于丑分庚辛于寅各为理分中末也
几何论约巻末
<子部,天文算法类,算书之属,数学钥>
钦定四库全书 子部六
数学钥天文算法类二【算书之属】提要
【臣】等谨案数学钥六巻
国朝杜知耕撰其书列古方田粟布裒分少广商功均输盈朒方程勾股九章取今线面体三部之法之载其图解并摘其要语以为之注与方中通所撰数度衍用今法以合九章者体例相同而每章设例必标其凡于章首每问答有所旁通者必附其术于条下所引证之文必着其所出搜辑尤详梅文鼎勿庵歴算书记曰近代作者如李长茂算海详説亦有发明然不能具九章惟方位伯数度衍于九章之外搜罗甚富杜端伯数学钥图注九章颇中肯綮可为筭家程式其説固不诬矣世有二本其一为妄人窜乱殊失本真此本犹当日初刋今据以校正以复知耕之旧焉乾隆四十六年四月恭校上
总纂官【臣】纪昀【臣】陆锡熊【臣】孙士毅
总 校 官【臣】陆费墀
钦定四库全书
数学钥卷一凡例
柘城杜知耕撰
凡例【计十四则】
一则
数非图不明图非手指不明图用甲乙等字作志者代指也作志必用甲乙等字者取其笔画省而不乱正文也甲乙等字尽则用子丑等字又尽则用乾坤等字如云甲乙丙丁方形则指第一图戊巳庚辛方形
则指第二图或错举二字谓
第一图为甲丁或乙丙形谓
第二图为戊辛或巳庚形又
指第一图左下角曰甲角右
下角曰乙角又或有两角相
连如第三图两形相同一角
如第四图举一字不能别为某形某角则连用三字曰寅癸丑角或壬癸子角以中一字为所指之角二则
四边皆等四角中矩者曰方形如第一图四角中矩四边两两相等者曰直形如第二图或四边等或两边等而四角俱不中矩者曰象目形如第三图四边俱
不等两角中矩两
角不中矩者曰斜
方形如第四图角
不中矩两边相等
者曰梯形如第五
图边及角俱不等
者曰无法形如第六图三边形有一方角者【甲为方角】曰勾股形如第七图无方角者曰三角形如第八图三则
形边之界曰线线之纵者曰长或曰高衡者曰濶或曰广在下者或曰底斜对两角者曰
四则
形之积步积尺曰积曰容方形之容或曰羃
五则
线之作志处曰防
六则
两线相并曰和
七则
以此线比彼线彼线之大于此线者以此形比彼形彼形之大于此形者或曰较或曰差如甲丙线之大于甲乙线为丙乙则丙乙为两线之较线或曰两线之
差丁己形之大于丁戊形为庚己形
则庚己为两形之较形或曰两形之
差
八则
甲乙线上作甲丙方形各边俱等于甲乙曰甲乙线上
方形其形之容即甲乙自乘
之数丁戊衡线戊己纵线内
作丁己直形己庚与丁戊等
庚丁与戊己等曰丁戊偕戊己两线矩内形其形之容即丁戊戊己相乘之数
九则
甲乙衡线上作丙丁纵线而丙丁乙与丙丁甲两角俱
方角则丙丁为甲乙线上之垂线
十则
两直线引至无穷不相离亦不相遇曰平行线平行线内任作几形皆等高如甲乙丙丁两线平行两线内
作戊己庚三角形与辛壬直形两形
之高必相等凡两形等高者则曰同
在平行线内
十一则
甲乙丙三形并为一形形曲如磬曰甲乙丙磬折形
十二则
方形并举四边曰方周
十三则
方形或圆形外实中虚曰环其中虚处曰虚形或曰缺形
十四则
甲乙形以丙丁线分之成甲丁丙乙两形或再以戊己
线分之成甲庚丙己戊丁庚乙四形
谓甲丁等二形或甲庚等四形曰分
形谓甲乙元形曰全形
数学钥巻一凡例
钦定四库全书
数学钥巻一目録
柘城杜知耕撰
【打 印】 【来源:读书之家-dushuzhijia.com】