御制数理精蕴 - 第4部分

作者:【暂缺】 【63,603】字 目 录

三十五短折之度矣然三十五长折盈于三十五短折者即七倍五长折盈于七倍五短折之度亦即五倍七短折朒于五倍七长折之度也五倍七短折之朒于五倍七长折者十长折之度也七倍五长折之盈于七倍五短折者十四短折之度也十四短折为索之倍长十长折亦索之倍长也故以五七对减之二除之得索长余同前解

六则

带分子母盈适足【朒适足同】

设物以银三分之二买之盈五两以银二分之一买之适足求物价银数法曰列母三子二盈五两于右列母二子一于左先以右上乘左中得三两即以三两乘右下【得一十五两】为物实又以两母相乗得六两即

以六两乗右下【得三

十两】为银实又以左

上乗右中【得四两】与

左中得数相减【余一

两】为法以法除物

实仍得一十五两为物价以法除银实仍得三十两为银数

解曰以两母相乗得六两取两母之齐数也【六两为二倍三两亦三倍二两也】右母乗左子得三两即六两二分之一也左母乗右子得四两即六两三分之二也以六两三分之二之四两与六两二分之一之三两较相差止一两今三分之二盈五两二分之一适足是元银三分之二与元银二分之一较则相差五两矣以相差之五两与相差之一两较为五倍之比例因知元银之与六两物价之与三两必皆为五倍之比例法以六两乗五两以一两除之者是借一两与五两之比例因六两以求元银也以三两乗五两以一两除之者亦借一两与五两之比例因三两以求物价也七则

带分子母两盈【两朒同】

设物以银四分之三买之盈七两五钱以银六分之四买之盈五两求物价银数法曰列母四子三盈七两五钱于右列母六子四盈五两于左先以右上乘

左中得一十六两

即以一十六两乗

右下【得一百二十两】次以

左上乗右中得一

十八两即以一十

八两乗左下【得九十两】两数相减【余三十两】为物实又以两母相乗得二十四两以二十四两乗右下【得一百八十两】以二十四两乗左下【得一百二十两】两数相减【余六十两】为银实另以左中右中两得数相减【余二两】为法以法除物实得一十五两为物价以法除银实得三十两为银数解曰二十四两为两母之齐数左中得十六两为二十四两六分之四右中得十八两为二十四两四分之三两数相差二两今盈五两与盈七两五钱较则差二两五钱是二十四两与元银之比例必若二两与二两五钱矣以二十四两乗两下对减为银实以法除之亦借比例法也【先乗后相减与先减后乗得数同】又求物实本当以元银六分之四乗右下四分之三乗左下然尚未得两率之数不得不借与两率比例等者用之与两率之比例等者乃二十四两六分之四之十六与四分之三之十八也故以之互乗两下左得九十两为一十八倍元银六分之四盈于一十八倍物价之数右得一百二十两为一十六倍元银四分之三盈于一十六倍物价之数而一十六倍四分之三与一十八倍六分之四两数实等是以对减之余即为二倍物价也故以十六十八对减之二除之得物价八则

带分子母一盈一朒

设物以银十二分之七买之盈二两五钱以银六分之二买之朒五两求物价银数法曰列母十二子七盈二两五钱于右列母六子二朒五两于左先以右上乗左中得二十四两即以二十四两乗右下【得六十两】

次以左上乗右中

得四十二两即以

四十二两乗左下

【得二百一十两】两数并【共二

百七十两】为物实又以

两母相乗得七十二两以七十二两乗左下【得三百六十两】以七十二两乗右下【得一百八十两】两数并【共五百四十两】为银实另以左中右中两得数相减【余一十八两】为法以法除物实得一十五两为物价以法除银实得三十两为银数

解曰七十二两为两母之齐数二十四两为七十二两六分之二四十二两为七十二两十二分之七两数相差十八两并盈朒两数共七两五钱【一盈一朒相并犹两盈两朒相减也】为元银十二分之七与六分之二相差之数是七十二两与元银之比例必若十八两之与七两五钱矣以七十二两乗两下相并为银实以十八除之亦借比例法也【解同前】又求物实以四十二两乗左下得二百一十两为四十二倍六分之二朒于四十二倍物价之数以二十四两乗右下得六十两为二十四倍十二分之七盈于二十四倍物价之数然四十二倍六分之二实与二十四倍十二分之七等今并六十两与二百一十两共二百七十两必四十二倍物价盈于二十四倍物价之数也四十二倍物价之盈于二十四倍物价者即十八倍物价故以十八为法除之得物价○又法以左中得数二十四两乗左下得数二百一十两得五千零四十两以右中得数四十二两乗右下得数六十两得二千五百二十两并两数共七千五百六十两另以两子二七相乗得一十四两除之得五百四十两为银实以前法十八除之得数同○左下先以四十二乗之又以二十四乗之右下先以二十四乗之又以四十二乗之犹以二十四与四十二相乗得一千零八以乗之也以一千零八乗之又以两中相乗得一十四除之犹以一十四除一千零八得七十二以乗之也前法元以两母相乗得七十二以乗两下得数相并为银实与后法无异故得数同也

数学钥巻五下之上

钦定四库全书

数学钥卷五下之下

柘城杜知耕撰

方程

一则

二色方程

设稻三石菽二石共价银八两二钱四分又稻四石菽五石共价银一十二两二钱求二色价法曰列稻三石菽二石价八两二钱四分于右列稻四石菽五

石价一十二两二

钱于左先以右稻

遍乗左行【菽得一十五石

价得三十六两六钱】次以左

稻遍乗右行【菽得八石】

【价得三十二两九钱六分】以两价得数对减【余三两六钱四分】为实以两菽得数相减【余七石】为法除之得五钱二分为菽每石价以右行菽二石因之【或用左行菽五石亦可】得一两零四分为菽二石价以减右共价余七两二钱为稻三石价以稻三石归之得二两四钱为稻每石价

解曰欲得稻菽二色价须先求菽一色价欲求菽一色价须先减去稻数及稻价欲减去稻数及稻价必先齐两行稻数稻价而使之等今左价一十二两二钱为稻四石菽五石之共价以右稻三石遍乗之价得三十六两六钱是三倍元价矣既三倍元价则必为三倍稻数十二石三倍菽数十五石之共价右价八两二钱四分为稻三石菽二石之共价以左稻四石遍乗之价得三十二两九钱六分是四倍元价矣既四倍元价则必为四倍稻数十二石四倍菽数八石之共价两行稻数既各十二石是稻数齐矣稻数齐而稻价因之亦齐矣于稻十二石菽十五石价内减去稻十二石菽八石之价所余非菽七石之价而何故以两菽对减之七石除之得菽价菽价既得求稻价不须解矣○如欲先得稻价则列两菽数于两稻数之上以右菽二石遍乗左行以左菽五石遍乗右行两价得数相减余十六两八钱为实两稻得数对减余七石为法除之得稻价此与前法同

前齐稻数故先得

菽价此齐菽数故

先得稻价也○前

稻数齐以十二石

后菽数齐以十石

法中不曽明言十二石十石乃暗用数也后仿此二则

三色方程一法

设稻五石麦七石菽四石共价银二十六两六钱八分又稻四石麦二石菽三石共价银一十四两七钱六分又稻七石麦五石菽七石共价银二十九两四

钱四分求

三色价前

法曰列稻

五石麦七

石菽四石

价二十六

两六钱八

分于左列稻四石麦二石菽三石价一十四两七钱六分于中列稻七石麦五石菽七石价二十九两四钱四分于左先以中稻四石遍乗右行【麦得二十八石菽得一十六石价得一百零六两七钱二分】以右稻五石遍乗中行【麦得一十石菽得一十五石价得七十三两八钱】两行对减麦余一十八石菽余一石价余三十二两九钱二分次以中稻四石遍乗左行【麦得二十石菽得二十八石价得一百一十七两七钱六分】以左稻七石遍乗中行【麦得一十四石菽得二十一石价得一百零三两三钱二分】两行对减麦余六石菽余七石价余一十四两四钱四分

解曰二色方程减去一色即得余一色之价三色方程必减去二色方得一色之价然无一算并减二色之法故前法互乗对减先减去一色也

后法曰列余麦一十八石余菽一石余价三十二两九钱二分于右列余麦六石余菽七石余价一十四两四钱四分于左先以右麦一十八石遍乗左行【菽得一百二十六石价得二百五十九两九钱二分】次以左麦六石遍乗右行【菽得六石价得一百九十七两五钱二分】以两价得数对减【余六十二两四钱】为实以两菽得数对减【余一百二十石】为法除之得五钱二分为

菽价以左菽七石

因之【得三两六钱四分】以

减左价【余十两零八钱】以

左麦六石除之得

一两八钱为麦价

取前图中行麦二石因麦价【得三两六钱】菽三石因菽价【得一两五钱六分】并两数【共五两一钱六分】减中价【余九两六钱】以中稻四石除之得二两四钱为稻价

解曰减去稻数稻价余麦菽二色故用二色方程法得菽价

三则

三色方程二法

设稻五石麦七石菽四石共价银二十六两六钱八

分又稻四

石麦二石

菽三石共

价银一十

四两七钱

六分又麦五石菽七石共价银一十二两六钱四分求三色价前法曰列稻五石麦七石菽四石价二十六两六钱八分于右列稻四石麦二石菽三石价一十四两七钱六分于左先以右稻五石遍乗左行【麦得十石菽得一十五石价得七十三两八钱】次以左稻四石遍乗右行【麦得二十八石菽得一十六石价得一百零六两七钱二分】两行对减麦余一十八石菽余一石价余三十二两九钱二分

解曰麦五石菽七石价十二两六钱四分不与两行并列何也葢前法元为减去稻价稻数取麦菽二色今此率本无稻数稻价故直与余麦余菽余价并列为后法也

后法曰列麦五石菽七石价一十二两六钱四分于右列余麦一十八石余菽一石余价三十二两九钱

二分于左先以右

麦五石遍乗左行

【菽得五石价得一百六十四两六钱】次以左麦一十八

石遍乗右行【菽得一百】

【二十六石价得二百二十七两五钱二分】以两价得数相减【余六十二两九钱二分】为实以两菽得数对减【余一百二十一石】为法除之得五钱二分为菽价【求麦价稻价同前】

四则

正负同异加减一法

设麦七石稷五石共价银一十六两二钱五分今以麦二石増银二两二钱四分换稷八石求二色价法曰列正麦七石正稷五石正价一十六两二钱五分于右列负麦二石正稷八石正价二两二钱四分于

左先以右正麦七

石遍乗左行【稷得五十

六石价得一十五两六钱八分】次

以左负麦二石遍

乗右行【稷得十石价得三十】

【二两五钱】两价得数同名相加【共四十八两一钱八分】为实两稷得数同名相加【共六十六石】为法除之得七钱三分为稷价【求麦价同一则】

解曰左行价二两二钱四分増二石麦价方与稷八石之价等麦二石乃倒欠之数故谓之负余皆谓之正者所以别于负也左右两麦相乘各得一十四石为正负之齐数以负麦遍乗右行价得三十二两五钱为麦一十四石稷十石之共价以正麦遍乗左行价得一十五两六钱八分尚欠一十四石麦价不足稷五十六石之价若将右行麦一十四石之价移于左行则右银必为稷十石之价左银必为稷五十六石之价故并之为稷六十六石之价○以正加正以负加负谓之同名相加以正减正以负减负谓之同名相减以正加负以负加正谓之异名相加以正减负以负减正谓之异名相减

五则

正负同异加减二法

设稻四石黍七石共价银一十五两五钱五分今以黍三石増银九两四钱五分换稻五石求二色价法曰列正稻四石正黍七石正价一十五两五钱五分于右列正稻五石负黍三石正价九两四钱五分于左先以右正稻四石遍乗左行【黍得一十二石价得三十七两八钱】次

以左正稻五石遍

乗右行【黍得三十五石价得

七十七两七钱五分】两价得

数同名相减【余三十九

两九钱五分】为实两黍

得数异名相加【共四十七石】为法除之得八钱五分为黍价【求稻价同一则】

解曰以右稻遍乗左行价得三十七两八钱尚欠一十二石黍价不足稻二十

打 印】 【来源:读书之家-dushuzhijia.com】