御制数理精蕴 - 第4部分

作者:【暂缺】 【63,603】字 目 录

两余形两余形之容必相等防何原本云甲丙对角线必分乙丁全形为丁甲丙乙丙甲相等两勾股形亦分庚丙角线形为辛庚丙巳丙庚相等两勾股形亦分甲庚角线形为戊甲庚壬庚甲相等两勾股形试于乙丙甲形内减去己丙庚形于丁甲丙形内减去辛庚丙形乙丙甲丁甲丙两形既等减去之己丙庚辛庚丙两形复等则所余之甲乙庚巳甲丁庚辛两斜方形必相等再于甲乙庚己形内减去甲庚壬形于甲丁庚辛形内减去戊甲庚形两斜方既等减去之甲庚壬戊甲庚两形复等所余戊辛直形与壬巳方形安得不等夫甲乙丙勾股形之甲乙勾减去壬巳方形之壬乙边余甲壬即余勾丙乙股减去己乙边余丙巳即余股辛庚与余股等戊庚与余勾等则戊辛直形之容必即余勾余股相乗之积而戊辛直形又与壬巳方形等则壬巳方形之容亦必余勾余股相乗之积也故置余勾股相乗平方开之得容方边也

三十一则

容方之勾股以余股及方边求余勾

设容方之余股八尺方边四尺求余勾法曰置方边自乗【得 十六尺】以余股除之得二尺即所求

解曰壬己方形既等于戊辛直形【图同前】而直形以余股为长以余勾为濶故以余股除积得余勾

三十二则

容方之勾股以余勾及方边求余股

设容方之余勾二尺方边四尺求余股法曰置方边自乗【得一十六尺】以余勾除之得八尺即所求

解同前

三十三则

日晷测高

设物不知髙止得物景一十二尺立表八尺表景二尺四寸求物髙法曰置物景为实以表髙乗之【得九十六尺】以表景除之得四十尺即所求

解曰物髙与物景表高与表景各以日光联之必皆

成勾股形而

体势等凡两

形体势等者

其比例必等

物髙与物景

之比例必若表髙之与表影也又表影与物景之比例必若表髙之与物髙也今物景既五倍于表景因知物高亦必五倍于表髙矣法以表髙乗物景而以表景除之者借表景与物景之比例因表髙以求物髙也

三十四则

一表测髙

设物不知髙距物二十五尺立表十尺又退行五尺立窥表四尺自窥表望之物末与表末相齐成一直线求物髙法曰置表距髙物二十五尺为实以窥表减表【余六尺】乗之【得一百五十尺】以退行五尺除之得三十尺为表外之髙加表髙共四十尺即物髙

解曰癸丁为物髙壬子为表髙乙丑为窥表乙丁对

角线为视线戊壬为表距髙

物之二十五尺壬辛为窥表

减表所余之六尺乙辛为退

行之五尺也甲丙一形分为

四形其辛巳戊庚为两角线

形其甲壬壬丙为两余形两

余形之容必相等【本卷三十则】法

以窥表减表以乗距髙物之

度必得甲壬余形之积甲壬

既等于壬丙则甲壬余形之积亦即壬丙余形之积矣故以退行五尺除之得庚壬庚壬与丁戊等丁戊则物髙于表之度也是以加表得物之全髙

三十五则

一表测逺

设物不知逺立表四尺退二尺五寸立窥表四尺五寸自窥表望之物脚与表末相齐成一直线求物逺法曰置表髙为实以退二尺五寸乗之【得十尺】以表减

窥表【余五寸】除之得二十尺

即表距逺物之度

觧曰以退二尺五寸乗表

髙必得辛巳余形之积然

辛己与戊庚等则辛己余

形之积亦即戊庚余形之

积矣故以表减窥表所余

之五寸除之得壬戊壬戊与辛甲等辛甲则表距逺物之度也

三十六则

一表测广

设邑不知广立窥表于甲甲距邑丁角五百尺立表于壬自甲视邑之丙角与表相齐成一直线次移前表于戊令戊壬与邑平行自甲视邑之丁角亦与表相齐成一直线自甲至戊二尺戊至壬六尺求邑广法曰置窥表距丁角五百尺为实以戊至壬六尺乗之【得三千尺】以甲至戊二尺除之得一千五百尺即邑广解曰戊庚辛己两余形既等每加一辛戊角线形成

甲庚甲己两直形两

形之容必亦等何也

两余形既等所加者

复等故也法以戊壬

乗甲丁必得甲庚直

形之积甲庚直形之

积即甲己直形之积

也故以甲戊除之得

戊巳戊巳与丁丙等丁丙则邑广也

三十七则

一表测深

设井不知深

井面濶八尺

自井边退二

尺立表六尺

自表末视水

面甲角与壬

边相齐成一

直线求井边至水面之深法曰置面濶八尺为实以表髙乗之【得四十八尺】以表至井边二尺除之得二十四尺即所求

解曰以表髙乗井濶即以丙己乗戊壬所得必戊庚余形之积戊庚余形之积即辛己余形之积故以表距井边之壬己除之得壬辛壬辛即井深也

三十八则

重表测髙远

设物不知髙及逺立表十尺退行五尺立窥表四尺自窥表望之物末与表末相齐成一直线自表退行一十五尺复立表十尺又退行八尺复立窥表四尺自窥表望之物末亦与表末相齐成一直线求髙及逺法曰置窥表减表余六尺为实以两表相距一十五尺乗之【得九十尺】以前窥表距前表五尺减后窥表距后表八尺余三尺除之得三十尺即表外之髙加表高共四十尺即物髙又置前窥表距前表五尺为实以两表相距一十五尺乗之【得七十五尺】亦以两窥表距两表之度相减余三尺除之得二十五尺即物逺解曰自窥表末及表末作丙丁甲乙两平行线以戊

乙戊己两视线联之必

成六勾股形其丙庚戊

形为甲己戊之截形两

形之比例必等辛己庚

形亦甲己戊之截形两

形之比例必亦等丙庚

戊与辛巳庚两形之比

例既皆等于甲巳戊是

辛己庚丙庚戊两形之

比例亦等矣壬乙丁形

与丙丁戊形亦同此论

夫辛己庚形之比例既

同于丙庚戊壬乙丁形

之比例既同于丙丁戊

则丙庚与辛己必若丙

丁与壬乙又丙丁与丙

庚必若壬乙与辛己也今丙丁与丙庚之较为庚丁壬乙与辛己之较为癸乙癸乙与庚丁两较之比例必俱等于相当各线之比例若是则丙庚与辛己戊丙与辛庚皆若庚丁与癸乙矣法置余表六尺为实以十五尺乗之三尺除之是借癸乙与庚丁之比例因辛庚以求丙戊也置窥表距表之五尺为实以十五尺乗之三尺除之是借癸乙与庚丁之比例因辛己以求丙庚也丙戊为表外之髙丙庚则物逺也三十九则

重表测广深

设谷不知深及广自谷

边退行六尺立窥表五

尺从窥表望之底角与

边角相齐成一直线复

于谷边立表一十五尺

将前窥表接髙一十八

尺共二十三尺从窥表

望之底角与表末相齐

成一直线求深及广法

曰置前窥表五尺为实以表髙一十五尺乗之【得七十五尺】以表【一十五尺】并前窥表【五尺○共二十尺】减后窥表【二十三尺】余三尺除之得二十五尺即谷深又置退行六尺为实以表髙一十五尺乗之【得九十尺】亦以三尺除之得三十尺即谷广

解曰与测髙逺同但有纵衡之殊耳

四十则

测逺之逺

设甲至乙八百步甲至丙七百步今自甲向乙行七

十二步立表于丁从

甲望之乙与表齐自

甲向丙行六十三步

立表于戊从甲望之

丙与表齐俱成直线

丁至戊五十四步求

乙至丙之逺法曰置

甲至丙七百步为实以丁至戊五十四步乗之【得三万七千八百步】以甲至戊六十三步除之得六百步即所求解曰六十三步之与七百步七十二步之与八百步其比例等因知丁戊与乙丙两线必平行凡三角形以与底平行线分之其分形之比例必等于全形甲丁戊既为甲乙丙之分形而丁戊乙丙又平行则甲戊与戊丁必若甲丙与丙乙也又乙丙与戊丁必若甲丙与甲戊也法置七百步为实以五十四步乗之六十三步除之者借甲戊与丁戊之比例因甲丙以求丙乙也○又截法如甲丙七百步则取七步为庚甲乙八百步则取八步为己巳庚六步乙丙必六百【步与乙步之比例也数学钥卷六】

步何也皆百

<子部,天文算法类,算书之属,数度衍>

钦定四库全书 子部六

数度衍天文算法类二【算书之属】提要

【臣】等谨案数度衍二十四卷

国朝方中通撰中通字位伯桐城人明检讨以智之子也以智博极羣书兼通算数中通承其家学着为是书有数原律衍几何约珠算笔算筹算尺算诸法复条列古九章名目引

御制数理精蕴法推阐其义其几何约篇本前明徐光启译本其珠算仿程大位算法统宗笔算筹算尺算采同文算指及新法算书惟数原律衍未明所自大抵裒缉诸家之长而增减润色勒为一编者也其尺算之术梅文鼎谓其三尺交加取数故只能用平分一线其比例规解之本法惜仅见其弟中履但称中通得旧法于豫章而不知其法何如并未获与中通深论又称见嘉兴陈荩谟尺算用法一卷亦只平分一线岂中通所据之法与荩谟同出一源欤盖不可考矣乾隆四十六年十月恭校上

总纂官【臣】纪昀【臣】陆锡熊【臣】孙士毅

总 校 官【臣】陆费墀

钦定四库全书

数度衍卷首上

桐城方中通 撰

数原

勾股原图説

一股较即勾股较

二勾较

三勾

四股

五

六股较与和

七勾较与和即勾股和

八勾和

九股和

通曰九数出于勾股勾股出于河图故河图为数之原周髀曰勾广三股修四径隅五天数二十有五之开

方也河图之数五十有五中五不用用其五十合勾自之股自之自之之数也勾三阳数也居左和而为八故八与三同位股四隂数也居右和而为九故九与四同位五勾股所求之数也居中勾较得二居上股较得一居下勾较与和为七故七与二同位股较与和为六故六与一同位居中倍为十而倍之之数不可用故洛书不用十也勾股左右両较上下四和四围岂偶然哉勾不尽于三而始于三股不尽于四而始于四不尽于五而始于五较不尽于一二而始于一二和不尽于六七八九而始于六七八九此勾股之原也

加减乘除原图

打 印】 【来源:读书之家-dushuzhijia.com】

首页上一页1617181920 下一页 末页 共20页/40000条记录