丁丙等戊
甲与丁甲等亦与丁丙等则以丁戊全线与大分丁丙相比之比同于丁丙大分与丙戊小分相比之比例为相连比例也
欲平分甲乙一直线为数段则于甲乙末各作一直线如丙丁将丙丁各为平分作线割甲乙
线则甲乙线亦为平分也于是甲乙线与乙壬线之比同于甲丁线与丁己线相比之比例矣
又如有甲乙线于己辛两处分为三分又有丙丁一线亦欲分为三分为相比例三率则以甲乙线丙丁线为平行线自甲乙之末各分直线切丙丁线末至
戊相防又自辛己两处各作两线亦合于戊则丙丁线即分为三分而为甲乙线之相比例三率矣
有直线二率作与此相连比例三率线法如有八分
甲乙四分甲丙之二线求作一二分
之相连线则将甲丙甲乙二线合成
甲角又于乙末増甲丙线度为甲戊
线自乙至丙作一直线又于戊作乙
丙之平行线如戊己将甲丙线引至己处则所引丙己线度即为二分之分而为甲乙甲丙相连比例第三率也【甲乙甲丙乙戊丙己为比例四率乙戊同甲丙除去不用则甲乙与甲丙之比同扵甲丙与丙己之比也】有直线三率欲作相比例第四率线再为相比例数率线则照様作甲丙线而以甲乙线度截于乙处乃用规矩以甲为心以乙为界作一弧线而取乙丁线度一股立于乙一股交于弧线得相交之丁处遂作乙丁线又作甲戊线切丁
末如甲丙度长又作与乙丁平行之戊丙线其戊丙线即为第四率也盖甲丙全与甲乙段之比同于丁乙平行线与戊丙底之比比例同也若欲作相比例数率则将甲戊甲丙线引长如癸子中作平行数线分为五叚即得十相比例率也故以甲乙与甲丙之比同于丁乙与戊丙之比例甲丙与甲己之比同于戊丙与庚己之比例甲己与甲辛之比同于庚
己与壬辛之比例甲辛与甲癸之比同于壬辛与子癸之比例也
比例尺二股各有平分线分为二百余分假如有丁戊一线欲分为十分则以规矩取丁戊线度立于尺各二百分之乙丙二防将尺乙丙二处照丁戊线度开之使不移动次以规矩立于尺之第二十分之己庚二防取己庚之间度此间度即是平分丁戊线为十分之度也何也如甲乙丙三
角形为己庚平行线所截则甲己与甲乙之比同于己庚与乙丙之比例甲己二十分甲乙二百分为十分之一乙丙十分己庚一分亦为十分之一也
于比例尺作圆之诸线之总线法则自甲之合处至乙丙二末作二线于甲乙之丁处为心以甲乙两末为界作半圆而分半圆界为百八十度自甲处至所分圆界各作线而立规矩一股于甲处又以一股于戊二十度己四十度庚六十度辛八十度壬百度癸百二十度子百四十度丑百六十度等处取线度各作于甲乙甲丙两线上即为诸线度之总线也其取用之法若欲知寅角之度则以规矩一股立寅处一股任意作夘辰弧线随取寅夘辐线之度立于尺之六十度之丁未处将尺之丁未照辐线度开之勿动乃将
规矩取夘辰弧线之度放于尺两股所容中间何处恰好若恰容在八十度之申酉处则是现原有寅角八十度之线也何则若作丁未申酉二直线则甲申酉之三角形为平行之丁未线所截则甲丁与甲酉之比同于丁未与申酉之比也然则甲丁为六十度线甲酉为八十度线其与底平行之丁未线既与小圆辐线等所以丁未线为小圆六十度之线申酉线亦为小圆八十度之线以此知寅角夘辰度之为八十度也如此凡大小圆之辐线度安于尺之六十度处照此开之其大小圆之诸线之度俱现于两股间也【以六十度通即半径故】
于比例作分平面线法自甲之合处至乙丙二末作直线截甲丙线于丁处照甲丁度于甲末作甲戊垂线自戊处至所截丁处作戊丁线照戊丁线度将甲丙线截于己处自戊至己作戊己线又照戊己线度将甲丙线截于庚处自戊至庚作戊庚线照此不止作至
丙末又将甲乙线亦照甲丙所截截之即成分平面线也何则于甲丁戊直角三角形之三界作三正方形甲丁甲戊上方相等者也丁戊上方兼甲丁甲戊两方者也至甲己之界即丁戊之界是甲己上方比甲丁上方为大一倍甲庚方大甲丁方为二倍也由是推之甲庚方大甲己方一倍甲辛方又大甲庚方一倍如此则甲辛甲壬等界上方俱是大于甲丁界上方三倍四倍可知也苟有一癸子平面四方形欲大于此形二倍之四方形则以规矩取癸子界度立于丁处将尺照此度开之勿动次将规矩取尺庚寅处度作方即大于癸子方二倍也盖于丁丑庚寅作二线而甲庚寅之三角为丑丁平行线所分则以甲丁比甲庚若丑丁比寅庚也甲庚既大于甲丁二倍则寅庚亦大于丑丁二倍矣有二直线欲以此二线作中比例线法则将二直线相连为圆径以平分处为心以两末为界作圆形然后于二线连接处作垂线切圆界则为中比例线也
有二直线作中二率比例线如图将二线合为直角又引作十字线如丁与丙取矩尺庚癸二角正跨两引线上使矩尺壬辛股二处正切于甲戊之末遂作甲癸癸庚庚戊三线其所现乙癸乙庚则为中二率线
也盖以戊癸之丑为心戊末为界作半圆以甲庚之寅为心甲末为界作半圆则乙癸线者甲庚半圆径上之垂线为甲乙乙庚之中率也乙庚线者戊癸半圆径上之垂线
为乙戊乙癸之中率也则以甲乙线比乙癸线同于以乙癸线比乙庚线也以乙癸线比乙庚线同于以乙庚线比乙戊线也故曰中二率也
于比例尺作分体线法则于甲之合处至二股之乙丙二末作甲乙甲丙二线以规矩取丁己方体之戊己界度立于甲而截于甲乙线之庚处次作大于戊己界一倍之辛壬线依前法求得中二率为癸子丑寅二线将癸子界作见方体则此
体大于丁己见方体一倍也盖四线为相连比例率而戊己与辛壬为加二倍之比例则丁己卯子二体为同式而以戊己癸子各一界相比之比例为加二倍之比例也戊己辛壬二线之比因同于丁己卯子二体之比例若辛壬第四线大于戊己一倍则卯子体亦大于丁己体一倍矣次将规矩取癸子界度一股立于甲一股照此度截于甲乙线之辰处则此度所作方体大于原丁己体一倍矣再作比原丁己体之戊己界长二倍之己未线照前求中二率之申酉戌亥二线将申酉第二率线度取于规矩一股立于甲一股截甲乙线之干处则甲干界度所作方体比原丁己体为二倍可知也照此不止作大于丁己体之戊己界或三四倍或五六倍之
长线如前求得中二率将所求第二率度截于尺线上即成比例尺之分体线也若有一坎庚见方体欲作一大于此二倍之体则以规矩取坎庚体之艮庚界度将比例尺之所截庚处照此开之勿动次将比例尺第三所截干处之开度取于规矩即是大于坎庚体二倍之形界盖甲庚线与甲干线之比同于以庚庚与干干线之比例甲干上方大于甲庚上方二倍则干干上方必大于庚庚上方二倍可知矣又有易分之法如一面之界度长一百厘则以此界一百厘自乘再乘则此体积共乙百万厘大此一倍之体数为二百万厘其二百万厘体之一面界度为一百二十五厘又大二倍之体数为三百万厘其三百万厘体之一面界度为一百四十四厘如此累加将外界之厘数书明又将厘度分于尺寸欲书入比例尺则将所书之数以规矩取所分之度初照一百厘界度截比例尺之庚处次照一百二十五厘界度截于辰处三照一百四十四厘界度截于干处不止至末与前法所分俱为同也
有一直角四界形作为与此等积之正方形如图将甲乙乙丙合为一直线求得中率之丁乙线作丁戊正方形为与甲丙等积也盖相连比例三率其中率自乘之积与首率末率相乗之积等故丁己上方与甲乙乗乙丙之方等积也
凡有三角形知其一角之度及角两旁之界
度或知其二角之度及一界之度或知三界度而不知角度欲求全知法如甲乙丙三角形知丙角为三十七度角两旁丙甲界长十四丈丙乙界长十三丈则作与丙角为等之丁角亦三十七度角傍丁戊界作为十四分长丁己界作为十三分长自戊至己作直线相防与甲乙丙大形同式将戊角之度取于规矩安于分度圆界看容多少便知戊角度若干若容七十度则大形甲角之度亦为七十度矣又小形己角可知为七十三度则大形乙角亦七十三度矣再因小形戊己界分作九分可知大形甲乙界之为九丈矣余皆如此盖即小以知大举一以例余也
作不用比筭测髙深广逺各种三角形之仪器法先作甲乙丙半圆界分为百八十度将此半圆之丁甲丁乙丁丙三半径线每每分为一百分各作直线纵横相交防如碁局再于径线之两末作两立表安住不动又于丁心处如图作一逰表如戊己将逰表亦如半径度分为二百分再于此仪器后面挂一坠线为庚即可按线而测矣如欲测旗杆之髙则将仪器之丁心安于所立之处定准坠线
以甲乙径线两末之立表与旗杆癸处对准为地平穏住不动再将戊己逰表与旗杆尖之辛处相对准次量所立之丁处至旗杆癸处得若干若得四十丈则看仪器地平线上自丁心起用四十分当四十丈如子再防子处垂线与上逰表相交处得若干若得三十分如丑则旗杆之髙为三十丈也若欲测丁辛线数则防自丁至丑相交处得若干分若得五十分则相当数为五十丈也若欲测丁癸辛三角形之各角度则癸角既为直角再防圆界自乙至游表相交处得若干度为丁角度与九十度相减所余者为辛角度也
画地图者选戊己两处可以尽见诸形先于戊处立仪器指诸要数处看所成之数角各得几何度记之次移仪器到己处将不动表与己对准为地平亦指于诸要数处看所成之数角亦各几何度亦记之然后取一幅纸任意作一线为戊己相当线将前所测角度仿而作之一 一与前相当成数三角形其中边所有之形一一画上即成图也若将大图蹲入小图则将大图分为数正方形小图亦分为数正方形与大图相当将大图中某方形内所函之山河城渠村林依蹲而入于小图即与原大图同也 凡有多界形仿此或为大或为小之同式形方如甲乙丙丁一无法形欲减各界之半作同式形则任意自一壬处作诸对角线又任意将甲乙界之度取其半为甲乙平行线作于甲壬乙
壬二线之间恰容癸子处照此于对角线间作诸界之平行线则所成癸子卯己之形即是原有形每界减一半之同式小形也苟欲作大于原有之形则将对角线任意引长而照前任意加为界度与原界作平行线即成所欲作之大形也或自一角发线亦可
凡两数相乗者平行方数也如二三相乗为六是也三数连乗者立方数也如二三乗得六又乗以四则为四六二十四也【以上为几何原本】
凡一与三之比同于四与十二之比一与五之比同于十二与六十之比二之比三亦犹四之比六也六之比九也盖凡可以倍计者皆可为比例二其二而为四二其三而为六三其二而为六三其三而为九故三与九之比同于六与三十六之比【按末句有误数】
凡可以度尽大数之众小数相合于此加数根之一所得之总数与所度之大数等也如大数有六可以小数二三度尽若加数根一则亦六也
大数二十八可以小数二四七十四度尽若将二四七十四与数根之一并之则亦二十八也
有一比例数求与此比例相等之相连比例数法如三与五之比例求与此比例相等之相连比例几将三自因得九又三与五因得十五又五自因得二十五则此九与十五及二十五之三数为三与五比例相等之相连比例三数也三与五之比同于九与十五之比例九与十五之比同于十五与二十五之比为相连比例也又将三因九因十五因二十五得二十七及四十五与七十五又将五因二十五得一百二十五此所得二十七四十五七十五一百二十五之四数为三与五比例相等之相连比例四数同于三与五之比例也
凡一数除众数所除得数之比同于原众数之比也如以三归十二而得四以三归十五而得五则四与五之比若十二与十五之比也而四与十二之比同于五与十五之比也
有同相比例四数其首末相乗所得数与中两数相乗之得数等也有相等两方数则此纵与彼纵之比同于以彼横与此横之比也如四六相乗与三八相乗皆为二十四则以此之六比彼之八以彼之三比此之四比例为等也
凡以两数除一数而尽此得之两数相比若所用以归除两数之比也如四除三十六而得九六除三十六而得六则九六两数之比若六四之比也
凡有平加众数此众数内之凡一数若作为原数将此数以上有几位平加几次相差之数与首数并之得数为与原数等也如上所列之数若将十五作原数此十五以上有四位而众数原平加之数系三若将三之四次数而与首数三相并得十五与所作原数之数等也由此推之若于平加众数内凡减一位将所余之位数与原平加之数相乗得数与众小数内至小数相并与众数内至大数为等也假如上六数内减一数余五数将此五与平加之三相因得十五与至小数三相并得【三六九二五八一一一】 十八为与至大数相等矣
凡平加众数若将此数内之两数相并所得数
【打 印】 【来源:读书之家-dushuzhijia.com】