数与两傍相等隔位之他两数相并得数等也如十二与九为廿一十五与六亦廿一十八与三亦廿一也盖升愈升降愈降合降与升则但见平也
又将此内凡一数之两傍数相加折半即与中间数等也如十五加九为廿四折半斯得十二矣十二加六为十八折半斯得九矣十八加十二为三十折半斯得十五矣其理则前节可推也
又此平加众数若将首末两数相加以所有几位之位数相乗得数折半则与原有众数之总数等也如十八加三为廿一以位数六乗之得乙百二十六折半得六十三与众数之总数等也盖照前节推六数相加合成三十三今以六乗故必折半也若五位或七位之竒数理亦相同
凡平加之位若是竒数则以中一位之数与位数几相乗即得众数之总数也如所列以中一位一○乗位数五得五十即为众数之总数也盖首尾相加乗位数折半而得总数今中位乃首尾相加之一半故以乗位数【四七○三六一一一】总数【○五】 即为总数也
凡有自一每位平加二比例众竒数之总与位数自乗之得数等也如所列总数得四十九以位数七七自乗亦四十九也若一三五七九五位总数二十五以位数五自乗亦二十五也理如前节以中一位数乗位数同盖七位则七为中五位则五为中故也亦如首乗相并【一三五七九一三一一】 折半乗位数之理也
凡有自二每位平加二之比例众偶数以位数加一以与位数相乗即与众数之总数等也如所列位数是七加一为八以与位数七相乗为五十六即总数之数也亦即首末相加折半乗中一位之理也若位数是偶则【二四六八○二四一一一】 以位数自乗可得众数之总数也
凡平加比例之众数如所列以小数一与大数十一相减余十以平加数根二除之得五再加入小数一得六【一三五七九一一】 即原有之位数也
凡平加比例知小数及位数与平加数根而求大数法如所列知小数三知位数六知平加数根四将位数六减一余五与平加数四相因得二十加十入小数三即大数为廿三也
若欲知小数则亦以位数六减一余五与平加数四相因得二十以与大数十三相减余三则此三即为至小数也
若知小数及位数及平加数根而求知总数则先察得大数为二十三加入小数三为二十六以与位数六相乗得一百五十六折半得七十八为所求之总数也若知大数及平加数根及位数而求知总数法亦如之若知大小两数及位数求平加数根法则将三与廿三相减余二十又将位数六减一为五除之得四则此四为平加数之根也
若知大小两数及平加数根而求位数法则将大数与小数相减余二十以平加数四除之得五加一为六即是所求之位数也
若知平加之数根与位数及众位之总数而求至大至小之两数法则将总数七十八以位数六除之得十三为首末两数相加之一半又将十三加倍作廿六为首末两数相加之总数乃将位数六减一余五与平加数根四相乗得二十为至大数又将前所得之二十六与此二十相减余六为小数之加一倍数此数折半为三是所求之至小数也将三加入二十得二十三为所求之至大数也此法之理备于前矣
凡不等两数求一数可以度尽之法如二十与廿四相减余四又将四与二十相减余十六以十六与四相减余八以四减八则无余则此四为度尽两数之数也谓之转减亦谓之纽数
三边无角不可以相比例则必先求中长线以为正然后角可求也然中长线之数为正而仅有半径无角无余则其数又不可知故以勾求股之术求之除一边为则总较之术所求者勾也盖两之总之较既具于上两边矣所求者欲破下边以为两勾而得其较耳两之总乗之较以两勾之总除之必得较矣【钝角则以较除而得总】以勾较之余取其半以益较必得大勾矣存其半必得小勾矣如此则中长线之数可明而勾股相求之术可施既得勾股之数则用以与半径正余相比例而角可得矣
一角有角无对边数两边有边无对角数则皆不可以互求矣然此两边所对之角乃与得角合成半周度是此角之外之弧度即两角之度也但未知两角之大小何如剖分耳惟外角有平行之对角与两角之一角等度则虽其数未可知而其形可剖欲知其数者必以两角之较求之欲知两角之较者又必以两边之较例之两边有总有较半外角又有切线则可因是以求半较角矣以半较角减半外角则小边对角之度得矣其余一角则可以三隅反矣
三较连乗者求三角容圆之半径也○三较者三边与半总相较之余也三较连乗所得之数乃容员半径自乗又乗半总之数也故以三较连乗为中率而以半总除之则得容员半径之积数矣以积数开方则得半径矣○两数所以相合者何也盖引伸三较于一边则半总也从两边之角直剖为长线于第一较处横断作小勾即容员半径也至末总断作大勾而以容员半径乗之即二较三较相乗之数也小勾自乗比乗大勾如第一较与半总之比例则二较相乗以小勾自乗乗之亦如第一较与半总之比例
【阙】
钱百文买果百颗 梨一颗钱三文 柑一颗钱二文橄榄七颗钱一文 算得梨四颗钱十二文 柑四十颗钱八十文 橄榄五十六颗钱八文【按此条前后皆有阙文】
庄氏算学卷二
<子部,天文算法类,算书之属,庄氏算学>
钦定四库全书
庄氏算学卷三
淮徐海道庄亨阳撰
勾股测量
立表杆测法【凡立表杆必用垂线取直并量所立地距人立尺寸以取凖】
测髙【设有一旗杆距人立处三丈欲知其髙立表杆测之】
法以距旗杆三丈处立一表杆髙四尺【如图丁丙】向前又立一表杆髙八尺【如图戊己】看两表端与旗杆顶齐【如图甲丁】量两表间相距五尺【如图丁庚】乃以五尺为一率前表八尺内减后表四尺余四尺【如图戊庚】为二率距旗杆三丈【如图丁辛】为三率求得四率二丈四尺【如图甲辛】加入后表四尺得二丈八尺【如图甲乙】即旗杆之髙也
测逺【设有一树欲知其逺用表杆测之】
法先立一表杆对树【如图甲乙】次于表杆处取直角横量十五丈立一表杆【如丙】再依次表立一表杆对树参直【如丁】乃于丁表处作垂线至丙乙线界【如图丁己】量得五丈复量丙
己度得三丈爰以三丈为一率五丈为二率十五丈【丙乙】为三率求得四率二十五丈【如图甲乙】即树之逺也
比例【比例者以原有之两数为例以今有之一数与之比较而得所求之数也凡比例皆列四率以二率三率相乗以一】
【率归除得四率为所求】
正比例【一名异乗同除】
法以原有之两数为一率二率今有之一数为三率得四率为所求凡一率与三率为类二率与四率为类设如每三人赏银一两八钱今应赏二百四十人共该银若干 法以原有之三人为一率一两八钱为二率今有之二百四十人为三率求得四率一百四十四两即赏银总数
转比例【一名同乗异除】
法以今有之一数为一率原有之两数为二率三率得四率为所求假如有田一畆原濶八步长三十步今要濶十二步该长若干 法以今濶十二步为一率原长三十步为二率原濶八步为三率求得四率二十步即今所求之长数【葢乗除之数逓増逓减者为正比例总数相同分者多则得数转少分者少则得数转多为转比例】
正比例带分
设如每铜二斤六两换锡三斤九两今有铜七斤十二两该换锡若干
法以原铜二斤六两通为三十八两为一率原锡三斤九两通为五十七两为二率今铜七斤十二两通为一百二十四两为三率求得四率一百八十六两即今所换锡数以每十六两为一斤除之得十一斤零十两
转比例带分
设如营造每日用五十六人计一月又九分月之三可以完工今每日用六十四人完工该几何日
法以今用六十四人为一率因分母为九【即命一月为九分也】加入分子三共十二为二率原用五十六人为三率求得四率十分半满分母九分收为一月余一分半即命为一月又九分月之一分半为完工之日数若欲知一分半之日数则以九分为一率以一月通为三十日为二率以一分半为三率求得四率五日是为分子日数
合率比例【系合两比例或合三比例用一次除乗而得】
设如以夏布换绵布但知每夏布三丈价银二钱每绵布七丈价银七钱五分今有夏布四十五丈应换绵布若干
法以夏布三丈与绵布价银七钱五分相乗得二两二钱五分为一率夏布价银二钱与绵布七丈相乗得一两四钱为二率夏布四十五丈为三率求得四率二十八丈即夏布四十五丈所换绵布之数【此两比例合为一比例法】如分两比例算之则先以夏布三丈为一率价银二钱为二率今夏布四十五丈为三率求得四率为价银三两即夏布四十五丈所值银数再以绵布价银七钱五分为一率绵布七丈为二率夏布所值银三两为三率求得四率二十八丈即为夏布所换绵布之数
设如原有鹅八只换鸡二十只鸡三十只换鸭九十只鸭六十只换羊二只今有羊五只问换鵞几何
法以羊二只与所换鸭九十只相乗得一百八十只再以所换鸡二十只乗之得三千六百只为一率以原鸭六十只与原鸡三十只相乗得一千八百只再以原鹅八只乗之得一万四千四百只为二率今羊五只为三率求得四率二十只即羊五只所换鵞数【此三比例合为一比例法】如欲分三比例算之则先求羊五只所换鸭数以羊二只为一率鸭六十只为二率今羊五只为三率求得四率得鸭一百五十只即羊五只所换鸭数次求鸭一百五十只所换鸡数以鸭九十只为一率鸡三十只为二率今羊五只所值之鸭一百五十只为三率求得四率得鸡五十只即羊五只所值鸡数然后求鸡五十只所换鵞数以鸡二十只为一率鵞八只为二率今羊五只所值之鸡五十只为三率求得四率得鹅二十只即羊五只所换鵞数也
测髙【设有一旗杆不知其逺今欲求其髙用表杆两测求之】
法先立一表杆髙四尺【如图丁丙】向前又立一表杆髙八尺【如图戊己】看两表端与旗杆顶齐【如图甲丁】量两表间相距五尺【如图丁庚】记之再退后三丈对凖前表立一表杆髙四尺【如图壬癸】向前又立一表杆髙八尺【如图子丑】看两表端与旗杆顶齐【如图甲壬】量两表间相距一丈【如图壬夘】乃以再测之距度一丈与先测之距度五尺相减余五尺【如图壬寅】为一率前表八尺与后表四尺相减余四尺【如图子夘】为二率先测与再测相距之三丈【如图壬丁】为三率求得四率二丈四尺【如图甲辛】加入后表髙四尺得二丈八尺【如图甲乙】即旗杆之髙如欲求其逺则以再测之距度一丈与先测之距度五尺相减余五尺【如图壬寅】为一率再测之距度一丈【如图壬夘】
为二率两测相距之三丈【如图壬丁】为三率求得四率六丈【如图壬辛】即旗杆距退后表杆之逺
又法设塔一座欲知其髙用相等两表测之
法先立一表杆比人目髙四尺人离表杆六尺防塔顶与表端齐又自前表退后六丈复立一表杆亦比人目髙四尺人离表杆八尺防塔顶与表端齐乃以前表距分六尺与后表距分八尺相减余二尺【如图己壬】为一率表比人目髙四尺【如图辛庚】为二率两表相距六丈【如图辛戊】为三率求得四率十二丈【如图甲癸】加表比人目髙四尺【如图癸乙】共十二丈四尺【如图甲乙】即人目以上之髙再加人目距地之尺寸即塔顶距地平之髙如求塔距前表之逺则以两表
距分相减之二尺【如图己壬】为一率前表距分六尺【如图丙丁】为二率两表相距之六尺【如图辛戊】为三率求得四率十八丈【如图戊癸】即塔距前表之逺再加六丈即塔距后表之逺又法设楼一座欲知其髙以不等两表测之
法先立一长表比人目髙六尺人离表五尺四寸防楼与表端齐又退后二丈立一短表比人目髙四尺人离表六尺四寸防楼脊与表端齐乃以前表比人目髙六尺【如图丙丁】为一率前表距分五尺四寸【如图目丁】为二率后表比人目髙四尺【如图戊己与庚辛同】为三率求得四率三尺六寸【如图目辛】为前表与后表同髙所得之距分【庚目辛勾股形与戊壬己勾股形同】爰以三尺六寸【如图目辛与壬己同】与后表距分六尺四寸【如图目己】相减余二尺八寸【如目】图壬为一率后表比人目髙四尺【如图戊己】为二率前表距分五尺四寸【如图目丁】内减三尺六寸余一尺八寸【如图辛丁】与两表相距之二丈【如图己丁】相减余一丈八尺二寸【如图戊庚】为三率求得四率二丈六尺【如图甲癸】加表比人目之髙四尺【如图癸乙】共得三丈【如图甲乙】即人目以上之髙再加人目距地尺寸即楼脊距地之髙
又日景测髙【设一旗杆量日景长十丈问髙防何】
法于同时立一表杆髙四尺量表景长二尺乃以表景二尺为一率表髙四尺为二率
【打 印】 【来源:读书之家-dushuzhijia.com】