四归之得四十五尺八十三寸六十六分二十二厘有余为倚壁内角凖之底面积再与髙五尺相乗得二百二十九尺一百八十三寸一百一十分【为长圆一角之体积】三归之得七十六尺三百九十四寸三百七十分为倚壁内角堆之积数然后以石率除之得三十石零五斗五升七合有余即所求倚壁内角堆之米数
倚壁外角堆设倚壁外角积米一堆髙六尺底周三十三尺该米几何
法以周三十三尺【此全圆周四分之三】三归四因得四十四尺为全周乃用圆周求面积法求得圆面积一百五十四尺六寸一十九分八十一厘九十二毫有余四归三因得一百一十五尺五十四寸六十四分八十六厘四十四毫有余为倚壁外堆之底面积再以髙六尺乗之得六百九十三尺二百七十八寸九百一十八分六百四十厘有余三归之得二百三十一尺九十二寸九百七十二分八百八十厘有余为倚壁外角堆之积数然后以石率除之得九十二石三升七合有余即所求倚壁外角堆之米数
截积
正方形从一边截积设正方积二百二十五尺今欲于一边截积四十五尺问截濶几何
法以总积二百二十五尺开平方得十五尺为正方边以十五尺除截积四十五尺得三尺即截积之濶于十五尺内减三尺余十二尺即截剰余积之濶也
正方形从两边截积设正方积三百六十一尺今欲截积一百六十五尺余积仍为正方形问应得边数几何
法以总积三百六十一尺与截积一百六十五尺相减余一百九十六尺开平方得一十四尺即截积所除之正方边
长方形截积设长方形一万九千二百尺长比濶多四十尺今减积二千八百八十尺问余积长濶各几何
法以总积一万九千二百尺用带縦平方得长一百六十尺濶一百二十尺今如欲截濶则以长一百六十尺除截积二千二百八十尺得十八尺为截积之濶于原濶一百二十尺内减十八尺余一百零二尺即截剰余积之濶如欲截长则以濶一百二十尺除截积二千二百八十尺得二十四尺为截积之濶于原长一百六十尺内减二十四尺余一百三十六尺即截剰余积之长截积
勾股形截上段积设股三十六尺勾二十七尺今从上段截积五十四尺问应截长濶各几何
法以股三十六尺为一率勾二十七尺为二率截积五十四尺倍之【即甲丁与丁戊相乗之长方】为三率求得四率八十一尺开方得九尺即所截之濶【葢股与勾之比必同于甲丁丁戊相乗之长方与丁戊自乗之正方之比】再以勾二十七尺为一率股三十六尺为二率所截之濶九尺为三率求得四率十二尺即所截之长
勾股形截下段积设股三十六尺勾二十七尺今从下段截斜方形积四百三十二尺问截长及上濶各若干
法以股三十六尺为一率勾二十七尺为二率截积四百三十二尺倍之得八百六十四尺为三率求得四率六百四十八尺乃以勾二十七尺自乗得七百二十九尺内减所得四率六百四十八尺余八十一尺开方得九尺为所截之濶再以勾二十七尺为一率股三十六尺为二率濶九尺与勾二十七尺相减余十八尺【如图己丙】为三率求得四率二十四尺【如图戊己与丁乙等】即所截之长或用勾股形有边求积法求得勾股积四百八十六尺内减从下段所截之斜方积四百三十二尺余五十四尺即为从上段所截之勾股形积依前法比例求之所得之濶即上濶上段之长与股三十六相减即下段所截之长
三角形截积算法与勾股形同【底濶如勾中长如股】
斜方形截上段积设两直角斜方形长二十四尺下濶二十尺上濶十二尺今从上股截积一百六十八尺该截长濶各几何
法以长二十四尺为一率下濶二十尺内减上濶十二尺余八尺为二率截积一百六十八尺倍之得三百三十六尺为三率求得四率一百一十二尺再以上濶十二尺自乗得一百四十四尺与所得四率一百一十二尺相加得二百五十六尺开方得十六尺即所截之濶乃以上下两濶相较减之八尺为一率长二十四尺为二率截濶与上濶相减余四尺为三率求得四率十二尺即所截之长
斜方形截下段积设斜方形长二十四尺上濶十二尺下濶二十尺今从下段截积二百一十六尺求截长濶
法以长二十四尺为一率下濶内减上濶余八尺为二率截积二百一十六尺倍之得四百三十二尺为三率求得四率一百四十四尺乃以下濶二十尺自乗得四百尺内减所得四率一百四十四尺余二百五十六尺开方得一十六尺即所截之濶再以上下两濶较减所余之八尺为一率长二十四尺为二率下濶二十尺内减截濶十六尺余四尺为三率求得四率十二尺即所截下段之长
梯形
梯形截上段积截下段积
法俱与斜方形同
上下两濶较比斜方形为二倍截积比斜方形亦为二倍故其比例皆同
梯形自一边截勾股积设梯形长一百二十尺上阔二十尺下阔八十尺今自一边截勾股积四百五十尺求截长阔几何
法以长一百二十尺为一率上濶二十尺与下濶八十尺较减余六十尺折半得三十尺【如图乙戊】为二率截积四百五十尺倍之得九百尺为三率求得四率二百二十五尺开方得一十五尺为所截之濶【如图乙辛】乃以半较三十尺为一率长一百二十尺为二率截濶十五尺为三率求得四率六十尺即所截之长
梯形自一边截斜方形积设梯形长一百二十尺上濶四十尺下濶八十尺今自一边截斜方形积四千二百尺求所截之上下濶
法以上濶四十尺与下濶八十尺较减余四十尺折半得二十尺为所截斜方形上濶与下濶之较又以截积
四千二百尺倍之得八千四百尺以长一百二十尺除之得七十尺为所截斜方形上濶与下濶之和加较二十尺得九十尺折半得四十五尺即下濶减较二十尺得五十尺折半得二十五尺即上濶
分积
三角形平分面积一半仍与原形同式
设三角形小腰边二十丈大腰边三十四丈底边四十二丈面积三百三十六丈今分面积一半与原形同式问所截三边各长若干
法以原面积三百三十六丈为一率原面积折半得一百六十八丈为二率底边四十二丈自乗得一千七百六十四丈为三率求得四率八百八十二丈开方得二十九丈六尺九寸八分四厘八毫为所截之底边乃以原底边为一率大腰边为二率所截底边为三率求得四率二十四丈零四寸一分六厘有余即所截之大腰边又以原底边为一率小腰边为二率所截底边为三率求得四率十四丈一尺四寸二分有余即所截之小腰边○凡各形截积仍欲与原形同式者算法
仿此
圆面截弧矢形有矢求圆设圆形径一尺二寸矢濶二寸四分求长
甲乙为全径甲戊为矢丙丁为甲丙丁为截弧矢形
法以矢濶二寸四分为首率圆径一尺二寸内减矢濶二寸四分余九寸六分为末率首末率相乗得二十三寸零四分开方得四寸八分为中率【即丙戊】倍之得九寸六分为弧矢形之
圆面截弧矢形有求矢设圆形径一尺七寸长一尺五寸求矢濶
法以长一尺五寸折半得七寸五分自乗得五十六寸二十五分为长方积以圆径一尺七寸为长濶和用带縦和数开方法算之得濶四寸五分即矢形之矢弧矢形求圆径设弧矢形长一尺一寸矢濶四寸求圆径
法以矢濶四寸为首率长一尺二寸折半得六寸为中率以中率六寸自乗首率四寸除之得九寸为圆之截径加矢濶四寸即圆径
圆面截弧矢形求积
法用勾股八线表比例求截弧之度分随比例得所截弧背之丈尺乃自截弧至圆心作一弧背三角形以半径数与弧背之丈尺相乗得数折半为弧背三角形之面积又自圆心至作一平三角形用半径与矢相减余数为中垂线以中垂线与相乗得数折半为平三角形面积两三角形面积相减即弧矢形面积
又法以矢与相加以半矢乗之得数为弧矢形面积此法较前法微疎如无八线表则以此法算之并积
两正方形并积有边较求分积及边
设大小两正方积共四百一十尺大方边比小方边多六尺问分积及各边几何
法以共积四百一十尺加倍得八百二十尺又以两方边较六尺自乗得三十六尺与八百二十尺相减余七百八十四尺开方得二十八尺为两方边之和加较六尺折半得十七尺为大正方之边减较六尺折半得十一尺为小正方之边以方边各自乗得积数
两正方形并积有边总求分积及边设大小两正方形积共六百一十七尺两正方边共三十五尺求分积及各边之数几何
法以共积六百一十七尺倍之得一千二百三十四尺又以两边和三十五丈自乗得一千二百二十五尺与倍积相减余九尺开方得三尺即两方边之较两边和三十五尺与边较三尺相加折半得十九尺即大正方之边减边较三尺得十六尺即小正方之边次方边各自乗得积数
两正方形相并有边较积较求各边设大方边比小方边多七尺大方积比小方积多三百四十三尺求各方边
法以积较三百四十三尺用边较七尺除之得四十九尺即两正方边之和加较七尺折半得二十八尺为大正方之边减较七尺余二十一尺为小正方之边两正方形相并有边总积较求各边设大小两正方边共三十一尺大正方积比小正方积多一百五十五尺求各边
法以积较一百五十五尺用两边和三十九尺除之得五尺为两方边之较与两边和三十一尺相加折半得十八尺即大正方之边减较五尺余十三尺即小正方之边
两正方形并积有积较求各边设大小两正方积共一百三十尺大正方积比小正方积多二十二尺求各边
法以积较三十二尺与共积一百三十尺相减余九十八尺折半得四十九尺即小正方之积开方得七尺即小正方之边小方积四十九尺与积较三十二尺相加得八十一尺即大正方之积开方得九尺即大正方之边三正方形并积有三边较求各边设三正方形共积三百八十一尺大方边比次方边多六尺次方边比小方边多三尺求各方边
法以大方边比小方边所多之较六尺自乗得三十六尺又以次方边比小方边所多之较三尺自乗得九尺两数相并得四十五尺与共积三百八十一尺相减余三百三十六尺三因之得一千零八尺为长方积【其濶为三小正方边长为三小正方边两大方边较两次方边较】又以大方边较六尺倍之得十二尺次方边较三尺倍之得六尺两数相并得十八尺为长濶较用带纵较数开方法算之得濶二十四尺归之得八尺即小正方边加次方边所多之较三尺得十一尺即次方边再加大方边所多之较三尺得十四尺即大正方
容面
圆面容正方设圆径十尺问内容正方边几何
法以圆径十尺自乗得一百尺折半得五十尺开平方得七尺零七分一厘有余即圆面内所容正方边也圆面容三角形设圆径二十尺问内容三角形之一边尺寸防何
乙丙与半径等甲乙丙为正勾股形全径为乙丙为勾则甲丙为股
法以圆径二十尺为折半十尺为勾用勾求股法得十七尺三寸二分有余即圆面内所容三角形之一边三角形容正方面设三角形大腰三十七尺小腰十五尺底四十四尺问内容正方边防何
法先用三角形求中垂线法求得十二尺为中垂线与底四十四尺相加得五十六尺为一率中垂线十二尺为二率原底边四十四尺为三率求得四率九尺四寸二分八厘有余即三角形内所容正方边也
三角形容圆面设三角形每边一尺二寸问内容圆面径防何
乙丙丁勾股形与甲丙丁勾股形同式丙丁勾为乙丁之半则甲丙勾亦必为甲丁之半甲丁与乙甲等故甲丙圆面半径得乙丙中垂线三分之一倍之即为全径
法先用三角形求中垂线法求得一尺零三分九厘有余为中垂线以三归之得三寸四分六厘有余为圆面半径倍之得六寸九分二厘有余即所求圆面径
勾股形容正方设勾九尺股十二尺问内容正方边几何
法以勾九尺与股十二尺相加得二十一尺为一率勾九尺为二率股十二尺为三率求得四率五尺一寸四分二厘有余即勾股形内所容正方面边也
勾股形容圆面设勾九尺股十二尺问内容圆面径几何
乙庚与乙戊等庚丁与丁己等于乙丙与丙丁勾股和内减乙丁所余为戊丙及丙己二段各为圆面之半径相并即为全径
法以勾股求法求得十五尺为乃以勾九尺与股十二尺相加得二十一尺内减数十五尺余六尺即所容圆面径
鋭角钝角三角形容圆面式
法先用三角形有边求积法求得三角形积倍之为长方积并三边共数除之得数为圆面半径加倍即为全径
按分逓折比例 二八差分 三七差分 四六差分 逓折差分 加倍减半差分
设有人一千六百名二分赏银八分赏米求赏银赏米人数各几何
法以二分八分相并得十分为一率人一千六百名为二率二分为三率求得四率三百二十名即赏银人数再以八分为三率求得四率一千二百八十名即赏米人数
设有米五百八十八
【打 印】 【来源:读书之家-dushuzhijia.com】