弧矢算术 - 弧矢算术

作者:【暂缺】 【14,585】字 目 录

 钦定四库全书 子部六

弧矢筭术 天文算法类二【算书之属】提要

【臣】等谨案弧矢算术一卷明顾应祥撰应祥有人代纪要巳着録弧矢之法始于元郭守敬授时厯草其有弧背求矢草立天元一为矢云云反覆求之至得三乘方积数及廉隅纵数而止不载开方筭式大抵开诸乗方法尚为当时畴人所习抑或别有専书皆不可知其矢相求及弧容直濶诸法皆以勾股法御之明唐顺之谓为步日躔月离源头作弧矢论以示顾应祥应祥遂演为是书名其编曰弧矢算术应祥未明立天元一法故置之不论惟补其开带纵三乗之式并详各矢相求之法与测圆海镜分类释术之作相同亦専备其数使学者可考而已乾隆四十六年二月恭校上

总纂官【臣】纪昀【臣】陆锡熊【臣】孙士毅

总 校 官 【臣】 陆 费 墀

弧矢算术序

弧矢一术古今算法所载者絶少钱唐呉信民九章法止载一条四元玉鉴所载数条皆不言其所以然之故沈存中梦溪笔谈有割圆之法虽自谓造微然止于径矢求而于弧背求矢截积求矢诸法俱未备予每病之南曹讼牒颇暇乃取诸家算书间附己意各立一法名曰弧矢算术藏诸箧笥俟高明之士取正焉未敢谓尽得其阃奥也嘉靖壬子春三月吉吴兴顾应祥识

弧矢论说

弧矢者割圆之法也割平圆之旁状若弧矢故谓之弧矢其背曲曰弧背其直曰弧其中衡曰矢而皆取法于径径也者平圆中心之径也背有曲直有脩短系于圆之大小圆大则径长圆小则径短非径无以定之故曰取则于径而其法不出于勾股开方之术以矢求则以半径为半径减矢为股股各自乗相减余为实平方开之得勾勾即半截也以求矢亦以半径为半截为勾勾各自乗相减余为实平方开之得股股乃半径减矢之余也以减半径即矢或以矢减全径为勾股和以矢为勾股较乘之亦得勾筭即半截筭也矢自乗圆径除之得半背差倍以加即弧背以半背差除矢筭亦得圆径半截自乗为实以矢除之得矢径差加矢即圆径以矢加以矢乗而半之即所截之积也倍截积以矢除之减矢即倍截积以为从方开之即矢惟弧背与径求矢截积与径求矢开方不能尽用三乗方法开之弧背求矢以半弧背筭与径筭相乗为实径乗径筭为从方径筭为上亷全背与径相乗为下亷约矢乗上亷以减从方以矢自乗以减下亷又以矢乗余下亷与减余从方为法除实得矢曷为以矢乗上防减从方也盖从方乃径与径筭相乗其中多一矢乗径筭之数故减之曷为又以矢自乗以减下亷也下亷乃背径相乗其中多一矢自乗之数故亦减之减之则法与实相合矣以截积求矢则倍积自乗为实四因积为上亷四因径为下亷五为负隅约矢以隅因之以减下亷又以矢一度乗上亷两度乗下亷并而为法矢减下亷者何也矢本减径而得故减径以求之五为负隅者何也凡以方为圆毎一寸得虚隅二分五厘四其虚隅与四其矢合而为五也四其亷者何也倍积则乗出之数为积者四故亦四其亷以就之升法以就实也若以截与截余外周求矢则以筭半筭相乗四而三之为实并及余周为益方半乗加筭为从上亷并亷及余周为下亷以约出之矢乗上亷又以矢自乗再乗为隅法并上亷以减益方矢自之以乗下亷并减余从方为法除实得矢

方圆论说【附】

世之习算者咸以方五斜七围三径一为凖殊不知方五则斜七有奇径一则围三有奇故古人立法有勾三股四五之论而不能使方斜为一定之法有割圆矢之论而不能使方圆为一定之法试以勾股法求之勾股各自乗并为实平方开之此施之于长直方则可若一整方勾五股五各自乗并得五十平方开之得七而又多一筭矣割圆之法求矢求固是至于求弧背则恐未尽也何以知之试以平圆径十寸者例之中心剖开矢阔五寸自乗得二十五寸以径除之得二寸五分为半背差倍之得五寸以加得一十五寸与围三径一之论正合然径一则围三有竒奇数则不能尽矣以是知弧背之説犹未尽也不特是也凡平圆一十二立圆三十六皆不过取其大较耳或曰宻率径七则围二十二徽率径五十则围一百五十七何不取二术酌之以立一定之法曰二术以圆为方以方为圆非不可但其还原与原数不合数多则散漫难收故算厯者止用径一围三亦势之不得已也曰厯家以径一围三立法则其数似犹未精然郭守敬之厯至今行之无弊何也曰厯家以万分为度秒以下皆不録纵有小差不出于一度之中况所谓黄赤道弧背度乃测验而得止以径一围三定其平差立差耳虽然行之日久安保其不差也窃尝思之天地之道隂阳而已方圆天地也方象法地静而有质故可以象数求之圆象法天动而无形故不可以象数求之方体本静而中斜者乃动而生阳者也圆体本动而中心之径乃静而根隂者也天外阳而内隂地外隂而内阳隂阳交错而万物化生其机正在于奇零不齐之处上智不能测巧厯不能尽者也向使天地之道俱可以限量求之则化机有尽而不能生万物矣余因论方圆之法而并着其理如此

钦定四库全书

弧矢筭术 明 顾应祥 撰

圆径与截矢求截

术曰半径为半径减矢为股各自乗相减余为勾筭平方开之得勾即半截

又曰以矢减径以矢乗之即半截筭

圆径十寸从旁截一弧矢阔一寸问截

答曰六寸

术曰半径自之得二十五 半径减矢自之得一十六寸相减

打 印】 【来源:读书之家-dushuzhijia.com】

首页 上一页 1 2345下一页末页共5页/10000条记录