钦定四库全书子部六
测圆海镜分类释术天文算法类二【算书之属】提要
【臣】等谨案测圆海镜分类释术十卷明顾应祥撰应祥有人代纪要已著录李冶测圆海镜所设一百七十问中皆有草有法【按前数十题中甚易者或无草后皆有草】草用立天元一为虚数合问数推之法専用问数推之皆归于纵诸乗方而止应祥得治书于唐顺之于立天元一语互相推求不得其解遂去其细草専演算法改为是书自谓便于下学殊不知立天元一之妙能使诸法不能求者可以得其法若无其草即冶已有不能得其法者而徒沾沾于加减开方之数可谓循枝叶而失本故唐顺之与应祥书云此书形下之数太详而形上之义或畧使观之者尚不免其数可陈而义难知有与人以鸳鸯枕而不度人以金鍼之疑仆意欲明公于要处提掇一二作法源头出来使后世为数学者识其大者得其义识其小者得其数则此书尤更觉精采耳其不足于应祥诚是第作法源头即立天元一一语应祥既去之又将何以为提掇乎然九章之中惟少广诸乗方之数为甚繁故立方纵之法古已不见有和较者冶所用有至三乗方四乗方及五乗方者且兼加减诸乘方亷隅不为之详其算式初学诚有难于取数者冶虽専为发明立天元一术得应祥所演诸乗方之式亦可为求立天元一法者之一云乾隆四十六年十月恭校上
总纂官【臣】纪昀【臣】陆锡熊【臣】孙士毅
总 校 官 【臣】 陆 费 墀
钦定四库全书
测圆海镜分类释术卷一
元 李 冶 撰
明 顾应祥 释术
圆城不知周径四面居中开门城外四隅各有十字大街西北隅曰干东北隅曰艮西南曰坤东南曰巽随地逺近测望以知城径
通勾股求容圆一
甲乙二人俱在城外西北隅干地乙东行三百二十步甲南行六百步望乙与城相叅直问城径
荅曰城径二百四十步
释曰此勾股求容圆径也东行为通勾南行为通股以通勾股求通和较和较即容圆径也
术曰勾股相乗倍之为实勾股求并勾股为和和为法除之
勾股求曰勾自之得一十○万二千四百为勾筭股自之得三十六万为股筭并二筭得四十六万二千四百为筭平方开之得六百八十并勾股得一千六百为和和后凡言勾股求者俱仿此
甲乙二人俱在城西北隅干地甲直南行不知步数而立乙直东行三百二十步望见乃斜行六百八十步与甲相防测城径
释曰此勾求容圆径也东行为通勾斜行为通术曰勾求股勾股相乗倍为实和和除之勾求股曰勾自乗得一十○万二千四百为勾筭自乗得四十六万二千四百为筭相减余三十六万为股筭平方开之得股
又术勾较乗勾倍之得二十三万○四百为实倍较为从作带从开平方法除之
带从开平方曰列实于左倍较得七百二十为从约初商得二百 置一于左上为法 置一为隅法带从方共九百二十为下法除实一十八万四千余实四万六千四百 倍隅法得四百为廉法约次商得四十置一于左次为上法 置一为
隅法并从方廉法共一千一百六十为下法与上次法相乗除实尽后凡言带从开平方法者俱仿此
甲乙二人俱在城外西北干隅甲东行不知步数而立乙南行六百步见之复斜行六百八十步与甲防测城径
释曰此股求容圆也南行为通股斜行为通术曰股求勾以乗股倍之为实和和除之股求勾曰筭减股筭开其余即勾后凡言股求勾者俱仿此
又术股相减余八十为股较相并得一千二百八十为股和以较乗和得一十○万二千四百即勾筭平方开之得勾三百二十减较即城径
既有勾股求圆径之法则勾求圆股求圆可以例见不必立法因原夲有此二问载于后卷故移附于此
边勾股求容圆二
甲乙二人俱在城西门甲南行四百八十步乙穿城东行二百五十六步见之测城径
释曰此勾上容圆也南行边股也东行边勾也以边勾边股求通圆
术曰勾股相乗倍之得二十四万五千七百六十为实勾股求得五百四十四并股共一千○二十四为股和为法除之
乙出东门直行不知步数而止甲出西门南行四百八十步见之乃斜行五百四十四步相防问城径释曰此边股边求边勾以求通容圆也南行为边股斜行为边
术曰股求勾以乗股得一十二万二千八百八十为实半股和得五百一十二为法除之
甲出西门南行不知步数而立乙穿城东行二百五十六步见之乃斜行五百四十四步相防问城径释曰此边勾边求边股以求通圆径也东行为边勾斜行为边
术曰勾求股以乗勾半股和除之
底勾股求容圆三
甲乙二人俱在北门乙东行二百步而止甲穿城南行三百七十五步见之问城径
释曰此股上容圆也东行为底勾南行为底股以底勾股求通圆
术曰勾股相乘倍之为实勾股求以勾和为法除之
乙出南门直行不知步数而立甲出北门东行二百步见之复斜行四百二十五步就乙问城径
释曰此底勾底求底股以求通圆径也东行为底勾斜行为底
术曰筭减勾筭余平方开之得股与勾相乗得七万五千为实 勾和为法除之得半径
又术倍勾较以乗勾筭得一千
【打 印】 【来源:读书之家-dushuzhijia.com】