御制数理精蕴 - 第5部分

作者:【暂缺】 【98,917】字 目 录

减余二十

七之六

整数内减零数式整一十内减零一十一之六先于整内抽出一数依零母数化为一十一作化子整止存九是化为一十一之一十一也于化内减十一之六余十

一之五是减余为九零十一之

整内减整及零式两整先减十内减四余六乃于六中

抽一依零母化五为子是化为

五之五也于化内减五之三余

五之二其余整六既抽一止存五是减余为五零五之二

整及零内减整及零式整数多者为原数先以两整相

减十内减六余四此乃

异母以两母乘得八为

共母乃子母互乘为子以右子一乘左母四得四为右并子以左子三乘右母二得六为左并子当于八之四内减八之六然四少六多不能减湏于既减之余整四内抽出一数以共母化为八又并右并子四为十二化为八之十二于此内减去八之六余八之六整数止存三是减余为三零八之六

整及零内减零式整数不动乃并母子以两母乘得三百六十三为共母母子互乘右得十一为并子左得一百三十二为并子当于右内减左而右并子少乃于整九内抽出一数依共母化为三百六十三并入右并子十一为三百七十四乃于此内减右并母子余三百六

十三之二百四十二整

九止存八是减余为八

零三百六十三之二百

四十二【可约为八零三之二】

通曰乘除内用加减加减内亦用乘除故四法通而一法通也

试减差法

试同母式以减余子三并入左子五为八合右子即以减余子三于右子八内

减之余五亦合左子无差

试异母式以减余二十七之六与左三之二相加合右九之八此两母乘得八十一为共母以减余子乘左母得十八乘右母得五十

四再并为七十二得八十一之七十二约之为九之八

奇零乘法

术曰两零相乘当以母乘母子乘子零与整乘则置整数与零并列而整数上立一数为母与零母并列依母乘母子乘子之法也其不止一整者或俱有带零者法详后

零与零乘式四之三与三之二相乘以两母乘得十二为乘母两子乘得六为乘子是乘为一十二之六

零与整乘式五之四与整八相乘乃以八上立一为母

作一之八与五之四并列依法乘

得五之三十二通曰但以整数乘

零数之子为乘子可也

整带零与整乘式整三零六之五与整八相乘先以右

整三与母六乘得十八并子五

得二十三为子化为六之二十

三以左整八上立一为母并列依法乘得六之一百八十四

整带零与零乘式四零三之二与二之一相乘依法右

位整乘母得十二并子二得十

四为三之十四与左零数并列

乘得六之十四

整带零与整带零乘式四零二之一与三零五之一相

乘依法整三与母五乘得十五

并子一得十六左为五之十六

整四与母二乘得八并子一得九右为二之九并列乘得一十之一百四十四

通曰竒零与常法不同常法皆乘少为多今或乘多为少葢借用虚数实非乘多为少也

试乘差法

通曰乘用除试除用乘试葢奇零试差皆彼此还原也式以前零与零乘式试之以乘得十二之六为原数以

其两相乘之数皆为

除数但湏倒位前曰

三之二今曰二之三前曰四之三今曰三之四乃以除数右母二乘原母十二得二十四以除数右子三乘原子六得十八是为二十四之十八约为四之三而合上左其左位依法还原为三十六之二十四约为三之二亦合上右

奇零除法

术曰两零相除右列原数左列除数却将除数倒列子母而与原数并列亦用母乘母子乘子之法乘出数即除出数也

零除零式二之一为实列右六之一为法列左倒为一

之六乃与二之一并列母乘母

子乘子即得除出数为二之六

零除整式整六为实三之二为法法倒为二之三实立

一为母作一之六乃并列相乘得

除出数

通曰乘除本互用于此可见

整带零除整式六为实四零三之二为法以母三乘整

四为十二并子二为十四

化为三之十四再用零除

整法得除数

整除零式三之二为实整六为法以六上立一为母又

倒为六之一与三之二并列乘得

除数

整除整带零式六零二之一为实三为法以整六乘母

二得十二并子一得十三化为二

之十三整三立母倒位并列乘之

整带零除零式三之二为实六零二之一为法以整六

乘母二得十二并子一得

十三化为二之十三倒位

乘之

零除整带零式六零二之一为实四之三为法以整六

乘母二并子一得十三化为二之

十三倒法位乘之

整带零除整带零式六零二之一为实三零五之二为

法依法实化为二之十三

法化为五之十七倒法位

乘之

试除差法

式以前零除零式试之以乘得二之六列右除数六之

一列左母乘母子乘子

得十二之六约为二之

一合右原数无差

重零除尽法

术曰归除不尽曰奇零然有原数内本来先带奇零者是大奇数内又有小奇数也若欲除之使尽当先归之使一列小奇于右列大奇于左两母相乘为总母又以小奇母乘大奇子并入小奇子为共子此即是除尽之数

大奇内有小竒式四人分一十五零三之二其不尽者整三零三之二也三之二为小奇四之三为大奇两母乘得十二为共母小奇

母乘大奇子得九并小奇子二为十一作共子是一十二之一十一为除尽数也

大奇内小奇有小奇式若小奇内复有小奇至三至四

者如

七除

不尽

而余

四数为七之四而又以此四中之一剖为五停之二又以二中之一剖为四停之三又以三中之一剖为三停之二此乃大奇内带三小竒也先并大次两母五七乘得三十五为母以次母五乘大竒子四得二十并入次子二得二十二为子是为三十五之二十二再并三奇以母三十五乘三奇母四得一百四十为母以三奇母四乘大次并子二十二得八十八并三奇子三得九十一为子是为一百四十之九十一再并四奇以母一百四十乘四奇母三得四百二十为母以四奇母三乘大次三并子九十一得二百七十三并四奇子二得二百七十五为子是为四百二十之二百七十五此即通并即除尽数也可约为八十四之五十五

大奇内有小奇用加除二法式凡大奇一位小奇止一

位者当用加除二法而前式葢防法也如第一式大奇四之三小奇三之二先用除法以小奇三之二列右止以大奇母四列左立一为母倒位并列乘得十二之二【此用整除零法】后用加法以除出之十二之二列右以大奇四之三列左两母相乘得四十八为共母或母除子乘求子或母子互乘求子右子得八左子得三十六并得四十四是积为四十八之四十四也【此用异母加法】约得一十二之一十一而合除尽数矣

附铺地锦

乘式有物二十三件每件价银五钱六分五厘问共若

干曰一十二两九钱九分五厘术

物数为实列上价数为法列旁相

呼填数于格内呼毕斜格成总也

先呼三五一十五次呼三六一十

八次呼三五一十五填三下之格内后呼二五得一十二六一十二二五得一十填二下之格内乃斜取总数一为一十一一为二两五一二一为九钱八一为九分五为五厘也

除式有银九十四两五钱买物七十斤问每斤若干曰

一两三钱五分术先画图置银数于内为实以物数为法自下左旋而上而右止用珠算归除诀先除九十起曰逄七进一十填在左图右格为一两又曰七二下加六次除四两因加六作十曰逄七进一十将此一并九十图内存二作三填在九十图左格为三钱又曰七三四余二次除五分因加二作七曰逄七进一十将此一并四两图内作四又作五填在四两图右格为五分共得一两三钱五分也

洛书算

通曰洛书用九八卦旋中加升减降法异理同九内易位越十移宫过去未来用之无穷

加式有四钱五分又三钱四分又三两五钱问共若干曰四两二钱九分术每图用棋子一枚先呼四钱五分将钱图棋子置四上分图棋子置五上又呼三钱四分将钱图四上棋子移置七上【四加三】分图五上棋子移置九上【五加四】又呼三两五钱将两图棋子置三上却以钱图七上棋子加五成一十二移置本图二上而两图三上棋子加一成四移置四上乃视各图棋子所在为总数也

减式先将总数棋子照图安置逐呼逐减即得

通曰又有一笔锦之法似笔算而叠改不同又有一掌金之法五指每指九位分三行自下而上曰一二三又自上而下曰四五六又自下而上曰七八九临算暗记殊觉可笑即铺地锦乘尚似筹而除则不可用矣惟洛书算为便并列图数而求之虽乘除亦可得也

数度衍巻三

钦定四库全书

数度衍卷四

桐城 方中通 撰

筹算

九筹

通曰珠算笔算皆有数而后乘筹算无数而先乘也故乘以筹为防数尽九九除亦因乘故随时施用所遇数更而先乘之数亦变多寡前后相合自成至若零筹无又无用之用也

开方筹

通曰筹有二曰平方自乘之还原也故用自乘之数曰

立方自乘再乘之还原也故用自乘再乘之数

乘法

术曰有实有法先将实数查筹从左向右齐列其两筹每格平行线斜方形合成一位并为一数矣次以筹之格为法数如法数是五即查第五格也若法有二位先查法尾所得数横列之次查法首所得数进一位横列之再用笔算加法得所求数

一位法式有五十九人每人八两问共若干曰四百七

十二两 以五十九人为实八

两为法先依实数查第五筹第

九筹五左九右并列次依法八查第八格内横数曰二曰七○曰四去○不用自左向右横视之得四百七十二两也得数尾与法尾数同故知为两

二位法式有五十四人每人六十四两问共若干曰三千四百五十六两 以五十四人为实六十四两为法

依实查五四两筹齐列先依法

尾四查第四格曰六曰一○曰

二自右向左横列之次依法首六查第六格曰四曰二○曰三进一位横列之用笔算加法得三千四百五十六两也多位法者视此每查格一回进一位列数

通曰九格内凡遇右尾有○者必湏列之以存位其○在数中者説详后式

筹内斜方有○无数式有五十四人每人二十八两问

共若干曰一千五

百一十二两 以

五十四人为实查筹并列二十八两为法先查八格曰二曰三○曰四横列之次查二格

曰八曰○曰一进一位列之加得合问

通曰斜方之中有数有○则去○不用若无数有○则湏存之以定位如八格去○列三二格列○存位是也筹内斜方倂数进十式有八十七人每人六两问共若

干曰五百二十二两

以八十七人为实查筹

并列六两为法查六格曰二曰四八曰四其曰四

八者并为十二本位存二以十进位作一其曰四者并所进之一为五当自右向左列曰二二五矣

用零筹式有六百零八人每人三十四两问共若干曰

二万零六百七十

二两 以六百零

八人为实查六筹

零筹八筹并列三十四两为法先查四格曰二曰三○曰四曰二横列之次查三格曰四

曰二○曰八曰一进一位列之加得合问

通曰实数整几十者列一零筹于右整几百者列二零筹于右以定位也

除法

术曰有实有法有商别列实数以法数依号查筹从左向右齐列于诸筹九格内查横行数之等于实数或畧少于实数者在第几格即是初商数如在第一格即一为初商也次以查得之数减其实数已尽则止一商如未尽则有再商即再查横行内数之等于存实或畧少于存实者在第几格即是再商数又以查得之数减其存实如前又未尽则更有三商倘初商已除实虽未尽而次位无实则商有○位即作○以当次商再以存实于格内查之若至余实数少于法数是为不尽法当命分之

一位商式有三百二十五两六十五人分之问各若干曰五两术别列三百二十五两为实以六十五人为法

查六五两筹左右齐列

查九格内何格数与实

相等一格至四格皆少五格内自左向右曰三二

五适等即五为商数矣

二位商式有三千三百二十五两九十五人分之问各

若干曰三十五两术

列三千三百二十五

两为实九十五人为法列筹二筹横数止三

打 印】 【来源:读书之家-dushuzhijia.com】