三位湏截实左三位曰三三二作三
百三十二于格内查之至三格自左向右曰二八五【中位一七并八】作二百八十五畧少于实数四格则多矣用三爲初商相减余四十七再以余实四七及截外之五作四百七十五查至五格四七【二五并七】五适等用五爲次商
商当有○式有三十二万三千八百七十六两五百三十八人分之问各若干曰六百零二两术列实查筹三筹横数止四位截实左四位曰三二三八作三千一一百三十八查一至六格自左向右曰三二二八作
三千二百二十八畧
少于实数七格则多
矣用六爲初商相减
余一十以余实一○及截七六作
一千零七十六此乃次位无实也
次商当作○竟不除实余实仍是一千零
七十六查至二格一○七六等用二爲三商
通曰次位三位俱无实者卽一连两商皆当作○也实不尽式有三千三百三十六两九十五人分之问各
若干曰三十五两
余实一十一两
列实查筹二筹横数止三位截实左
三位曰三三三查至三格自左向右
曰二八五畧少于实数用三为初商相减余四八以余实四八及截外六作四八六查至五格四七五畧少于余实用五为次商相减尚余一十一为不尽数也
开平方法
术曰有积数【即实数】有商数商有方法有亷法隅法置积数从末位下作防向左隔一位作一防有一防知有一商也视平方筹内自乘之数与实相等或畧少者取以除实但自左一防为始防前无位则自乘止于零数防前有位则自乘应有十数而此乘数在筹内第几格即用其格数为初商也有二防者以初商倍之乃以倍数查筹列于平方筹之左再视诸筹横行内数与存实相等者用以除实而此数在几格即用为次商也实不尽者以法命之或实右加○再开之详少广章
通曰开方有实无法故用方廉隅以代之初商积与次商隅积皆自乘数也次商亷积之数处初商与隅积之问也
第一求初商之根为方法乙为
方积也不尽求二防之商倍初商
根为廉法甲丙两长邉也隅法丁
方一角也此甲乙丙丁为平方二
商之形如三商则加戊巳亷及庚
隅也
式有积三万二千○四十一平方开之问邉得若干曰
一百七十九
别列积为实从
末位一下作防
向左隔一位○
下作三下作
防共得三防知商有三位
也防左无实三作零数视
方筹内自乘无三近少为
一平行取一为方法为初
商乃于实三内减去一格
自乘之一存二以共次防
实曰二二○为余实次倍初商根得二为亷法【倍一为二】取二号筹列方筹之左于两筹横行内求二二○无则用近少者一八九在第七格即七为次商为隅法乃以一
八九减余实二二○余三
一以共三防之实曰三一
四一为次余实再倍初次
两商之一七得三四【初商一作】
【一十次商七共为十七倍为三十四】为次廉法乃去次商所列之第二筹又取三号四号两筹自左向右俱列方筹之左于横行内求三一四一在第九格即九为三商为次隅法减实无余即三次所商为平方邉一百七十九也
开立方法
术曰有积数有商数商有方法有平廉法长亷法隅法置积为实从末位作防向左隔二位作防每一防有一商视立方筹内再乘之数有与实相等或近少者用以除实也但自左一防为始防前无位则再乘止于零数防前有一位则再乘应有十数防前有二位则再乘应有百数而此乘数在第几格即用作初商也有二防者以初商自乘而三倍之为平亷法以初商三倍之为长亷法却以平亷法数查筹列立方筹左以长亷法数查筹列立方筹右乃视左筹与方筹之横行内数查其或等或少于余实者取格数为约数即以此为次商以次商自乘之数与长亷法数相乘进一位书于约数之下以此二数并之除其余实即得立方邉也不尽者依法命之详少广章
其一作六面方体诸面线角皆相等
此名方法体成甲乙丙丁形
通曰此初商形也凡边皆初商之
数
其二作六面扁方体其上下面各与
方法等旁四面之髙少于方法之髙
而四棱线皆等此名平亷法体成戊
己庚辛形
其三作六面长方体其上下左右四
面与平廉之旁面等两端之四界线
皆与平廉之髙等此名长廉法体成
壬癸形
其四作六面小立方体六面之广袤皆与长廉之两端等此名隅法体成子丑形
通曰右三形皆次商形也三四商者亦如此三形増之通曰初商方根次商上加一平廉左加一平廉后加一平廉故三倍初商之自乘为平廉法也上与后之边齐右加一长廉上与左之边齐前加一长廉左与后之边
齐下加一长廉故三倍初商为长廉法也上与左与后三角加隅法而立方形成矣
式有积九百一十二万九千三百二十九立方开之问边得若干曰二百零九术别列积数为实从末位九下
作防向左隔二位
作凡三防知商
有三位也防前无
实则实首九为零
数视立方筹内再
乘之数无九三格
二七过实用二格
八实之近少数也
即取二为方法为
初商九内减
【打 印】 【来源:读书之家-dushuzhijia.com】