御制数理精蕴 - 第5部分

作者:【暂缺】 【98,917】字 目 录

测髙逺式树二表各髙八尺南北相去二千里以测日影夏至之日南表影长六尺北表影差二寸问曰髙逺各几何曰髙八万里日下去南表六万里南表之端斜至日十万里术

二表两余勾也北表影南表影两破股也南北相去小股也日下去南表大股也日髙大勾也斜至曰也

测勾破勾两测股求大勾大股法

式丙丁测勾四十三二丙巳破勾十丙戊小测股十四

八丙壬大测股六十四八问大勾大

股各几何曰甲乙大勾二千五百乙

丙大股三千六百八十五二术通曰以测勾四十三二减破勾十余三十三二乗小测股十四八得四千九百一十三六为勾实以大测股六十四八乗破勾十得六千四百八十以测勾四十三二除之得十五为景差又以大测股六十四八减景差十五余四十九八以小测股十四八乗之得七千三百七十○四为股实以小测股减景差余二为法以法除勾实得二千四百五十六八加测勾四十三二得二千五百为大勾以法除股实得三千六百八十五二为大股

测广逺式方城不知大小立两表东西相去四十三步

二分齐人目处以索连之令东表与

城东南隅东北隅参直従东表退北

行去表十四步八分遥望城西北隅入索东端十步若从东表退北行去表六十四步八分遥望城西北隅适与西表相参合问城方防何城去表几何曰城方二千五百步城去表三千六百八十五步二分术以两表相去减入索余三十三步二分以乗东表退行十四步八分得四千九百一十三步六分为广实以东表大退行六十四步八分乗入索十步得六千四百八十步以两表相去四十三步二分除之得一十五步为景差又以大退行六十四步八分减景差十五步余四十九步八分以退行十四步八分乗得七千三百七十步零四分为逺实以退行十四步八分减景差十五步余二分为法以法除广实得二千四百五十六步八分加两表相去四十三步二分得二千五百步为城方【西至束】以法除逺实得三千六百八十五步二分为城去表也

通曰城方大勾也城去表大股也两表相去测勾也入索破勾也小退行小测股也大退行大测股也

四余勾两破股小股破勾求上勾下勾大股法

式戊丁壬癸两大余勾皆一百五十庚辛子丑两小余勾皆四十癸丁小股四千戊已破勾五十六丁辛小破股一千五百癸丑大破股二千五百问上勾下勾大股

各防何曰甲乙上勾二百八十乙丙

下勾三百一十丙丁大股六千术通

曰以小股四千乗破勾五十六得二

十二万四千为上勾实以大余勾一

百五十减小余勾四十及破勾五十六余五十四乗小股四千得二十一万六千为下勾实以小破股一千五百与大破股二千五百相减余一千为法以法除上勾实得二百二十四加破勾五十六得二百八十为甲乙上勾以法除下勾实得二百一十六加大余勾一百五十得三百六十六减破勾五十六得三百一十为乙丙下勾又以大余勾减小余勾余一百一十乗小股得四万四千为大勾实以法除之得四百四十加大余勾得五百九十为甲丙大勾以小股乗小破股得六百万为大股实以法除之得六千为丙丁大股

通曰此测两髙与逺也与前两余勾两破股小股求大勾大股法相同但多上勾下勾耳两大余勾两表也两小余勾两人目至足也勾髙也股逺也

两测股两破勾测勾求大勾法

式丙丁测勾九百丙戊小测股六百丙庚大测股一千

三百五十己丙大破勾四百零二

辛丙小破勾一百二十问大勾防

何曰甲乙大勾三万术通曰以大

测股一千三百五十乗大破勾四百零二得五十四万二千七百以测勾九百除之得六百零三为景差以与小测股六百相减余三为法以小测股与大测股相减余七百五十又乗小破勾一百二十得九万为实以法除实得三万为甲乙大勾

通曰此测广也与前测勾破勾两测股求大勾大股法相同但多乙戊直线耳丙丁两表也戊庚两目望也勾广也

勾股互求髙深广逺图説

通曰直为髙深横为广逺勾可以为股股可以为勾以小知大以此知彼惟善测者善用之耳甲乙为股则乙丙为勾酉丙为股则甲酉为勾午丙为股则午庚为勾庚丑为股则丙丑为勾如求甲乙之髙金水作表丙作目求丑丙之逺木土作表甲作目求未丙之深木火作表甲作目求甲酉之广日月作两表丙丁为目斜望用异乗同除三率之法髙深广逺虽分而合矣

附法

用矩尺测两广法

式登山临邑邑在山南不知广縦偃矩山上勾髙三尺

五寸与邑东南隅东北隅

参合从勾端望东北隅入

下股一丈二尺随于入股

处横设一矩从勾端望西

北隅入横股五尺若望东

南隅入下股一丈八尺又重设矩于上相去四丈从勾端望东南隅入上股一丈七尺五寸问邑广纵几何曰东西广二万寸南北广二万四千寸术以勾髙戊子三十五寸乗东南隅入下股庚子一百八十寸得六千三百寸以入上股癸丑一百七十五寸除之得三十六寸与勾髙戊子三十五寸相减余一寸为法以东南隅入下股庚子一百八十寸与东北隅入下股己子一百二十寸相减余六十寸以乗两矩相去丑子四百寸得二万四千寸为南北实以法除之得南北广以西北隅入横股辛已五十寸乗两矩相去丑子四百寸得二万寸为东西实以法除之得东西广

用矩尺测逺法

式欲测甲乙之逺先于甲立丁甲表以矩尺置表末丁矩戊对乙成丁戊乙直线问甲乙逺几何曰八尺术须视矩丙对何处今对巳为丁丙己直线乃量己甲二尺为法表髙四尺自乗得十六尺为

实以除之得八尺为逺

用交表测逺法

式欲测乙戊之逺先立甲乙表后于庚斜加小表为丙丁以丁对戊为度成庚丁戊直线问乙戊逺几何曰八尺术须丙丁小表族转又于丁对

处已成庚丁已直线自乙至巳得八尺必与乙戊等

用表测斜髙法

式欲测甲至丙从丁视甲丙作直线丁乙八尺丁甲十尺乙戊十二尺问甲丙斜髙几何曰十五尺术以丁乙八尺为法以丁甲十尺与乙戊十二尺相乗得一百二十为实以法除之得十五尺为甲

至丙也

器测【勾股之八】

矩度

甲丁与甲乙等甲丙斜分乙

丙为直景丁丙为倒景以甲

乙相对测际眼穿戊己两耳

与其际作直线视权线垂何

景何度也今止分十二度若

细分更精其两景别有论解

测髙法

权线垂丙式髙如己庚景在地平上为庚辛以矩度测之甲对己两耳与辛巳作直线权线垂丙为髙防何术凡权线垂丙者景与髙必等也今辛庚四十五尺则己庚亦四十五尺

权线垂直景边式髙如己庚景如庚辛权线垂乙丙边之戊乙戊八度庚辛景三十为髙防何术以表度十二与庚辛三十相乗得三百六

十为实以乙戊八度为法除之得四十五为己庚之髙权线垂倒景邉式髙如己庚庚辛景六十七五权线垂丁丙边之壬丁壬八度为髙防何术以庚辛与丁壬相乗得五百四十为实以表度

十二为法除之得四十五为己庚之髙

通曰髙大于景权线必垂直景边髙小于景权线必垂倒景边

测逺法

权线垂丙式髙如己庚景如庚辛权线垂丙为景防何

术己庚四十五则辛庚亦四十五

通曰景测髙以甲对髙髙测景以乙对景景逺也

权线垂直景邉式己庚髙四十五权线垂戊八度为庚辛景几何术以己庚与乙戊相乗得三百六十为实以表度十二为法除之得三十为庚

辛景

权线垂倒景邉式己庚髙四十五权线垂壬八度为庚辛景防何术以表度十二与己庚相乗得五百四十为实以丁壬八度为法除之得六十七五为庚辛景

以目测髙法

于矩度外又用一有度分之表人目切表端矩度亦切表端穿两耳向测处作直线为度也

权线垂丙式髙如己庚表如乙辛髙四尺表端人目从矩度乙甲视巳为直线权线垂丙为髙几何术乙壬四十五卽巳壬加表髙四尺得四

十九为己庚之髙

权线垂直景边式庚辛三十权线垂戊八度为己庚髙几何术以表度十二乗庚辛得三百六十为实以乙戊八度为法除之得己壬四十

五加表髙四得四十九为己庚之髙

权线垂倒景边式庚辛六十七五权线垂壬八度为己庚髙防何术以庚辛乗丁壬八度得五百四十为实以表度十二为法除之得己癸四十五加表髙四得四十九为己庚之髙

通曰地平线上任意前后至权线直丙而止较便

以目测逺法

权线垂丙式逺如己庚表如甲巳目在甲权线垂丙为逺几何术表髙甲巳四尺则己庚亦逺四尺也

权线垂直景边式甲已表髙四尺权线垂戊九度为己庚逺防何术以乙戊九度乗表髙四得三十六为实以表度十二为法除之得三尺

即己庚之逺

权线垂倒景边式甲巳表髙四尺权线垂壬八度为己庚逺防何术以表度十二乗表髙四得四十八为实以丁壬八度为法除之得六尺即己庚之逺

通曰测髙目在矩之乙测逺目在矩之甲

以目测深法

权线垂丙式深如己壬目在甲视甲乙己辛为直线己庚口四尺权线垂丙为深几何术己壬与己庚等亦四尺也

通曰此不另用表而量己庚口者即口濶为表长是前用直表而此用横表也

权线垂直景边式己庚四尺权线垂戊六度为己壬深几何术以表度十二乗己庚四得四十八为实以乙戊六度为法除之得八尺即己

壬之深

权线垂倒景边式己庚四尺权线垂癸九度为己壬深几何术以丁癸九度乗己庚四得三十六为实以表度十二为法除之得三尺即己壬之深

倒景变直景图说

通曰十二其十二得一百四十四以矩度为准也故一度变为一百四十四度以此一百四十四度为实以所值度为法除实即得变度也

度线皆起甲端渐移至丁

至乙各分十二也

通曰倒景过丙丁边抵丙

戊线则变为直景犹之直

景过乙丙边抵丙巳线则

变为倒景也倒景十一度

直景则为十三度一分倒

景十度直景则为十四度四分倒景九度直景则为十六度倒景八度直景则为十八度倒景七度直景则为二十度五分七厘倒景六度直景则为二十四度倒景五度直景则为二十八度八分倒景四度直景则为三十六度倒景三度直景则为四十八度倒景二度直景则为七十二度倒景一度直景则为一百四十四度也以直景推之亦然

重矩测髙法

通曰测髙而不知逺此求无股之勾也法皆用直景即权线在倒景边亦变为直景用之

皆直景式欲测己庚之髙先立乙辛表目在辛上乙权

线垂戊五度又立乙癸表目在癸上

乙权线垂子十度两表相去十尺表

髙四尺为髙防何术以两度相减余

五度为法以表度十二乗两表相去

十尺得一百二十为实以法除实得二十四尺即己至壬加表髙四尺得二十八尺为己庚之髙

通曰辛表为直景癸表或有倒景之时癸表为直景辛表无不直景矣

有倒景式欲测己庚之髙先立乙辛表权线垂戊十一度又立乙癸表权线垂子九度乃倒景也今变作直景为十六度两表相去二十尺表髙四尺为髙防何术以十六度减十一度余五度为法以表度十二乗两表相去

二十得二百四十为实以法除实得四十八尺即己至壬加表髙四尺得五十二尺为己庚之髙

数度衍卷七

<子部,天文算法类,算书之属,数度衍>

钦定四库全书

数度衍卷八

桐城 方中通 撰

测圆【勾股之八】

李栾城测圆图

通曰圆于三隅之中

方于一圆之外规矩

井然而变化莫测故

规矩有定之方圆也

方圆无定之规矩也

名率

天地通六百八十 天干通股六百 干地通勾三百二十勾股和九百二十 勾股较二百八十 勾和一千 勾较三百六十 股和一千二百八十 股较八十 较和九百六十 较较四百 和和一千六百 和较二百四十

天川边五百四十四 天西边股四百八十 西川边勾二百五十六 勾股和七百三十六 勾股较二百二十四 勾和八百 勾较二百八十八股和一千○二十四 股较六百四十 

较和七百六十八 较较三百二十 和和一千二百八十 和较一百九十二

天山黄广五百一十 天金黄广股四百五十 金山黄广勾二百四十 勾股和六百九十 勾股较二百一十 勾和七百五十 勾较二百七十股和九百六十 股较六十 较和七百

二十 较较三百 和和一千二百 和较一 百八十

天月大

打 印】 【来源:读书之家-dushuzhijia.com】