得四千九百降二位为庇积四
十九【法有二位故降二位】又术以方面折半为七又折半为三五自乘得十二二五为一庇积以四乘之得四十九以减方积得圆积【七五乘二五乘説见后】
圆内容方法
圆径求方积羃积式圆径十四问方积羃积各几何曰方积一百羃积四十七术以圆径十四乘方斜面率五得七十以方斜率七除之得一十为内方面自乘得方积一百用圆径求圆积【详后】得一百四十七以减方积余四十七为羃积
立方内容立圆法
立方面求立圆积立庇积式立方面十六问立圆积立庇积各几何曰立圆积二千三百○四立庇积一千七百九十二术通曰以立方面十六
自乘得二百五十六再乘十六得四千○九十六为立方积以十六除之得二百五十六以九乘之得二千三百○四为立圆积二积相减余一千七百九十二为立庇积【九乘十六除説见后】
立圆内容立方法
立圆径求立方积立羃积式立圆径十七问立方积立
羃积各几何曰立方积一千七百
七十一五六一立羃积九百九十
一九九九术通曰以立圆径十七
用径求积法【详后】得二千七百六十三五六零为立圆积以圆径为立方斜乘方斜面率五得八十五以方斜率七除之得一十二一零自乘得一百四十六四一再乘一十二一得一千七百七十一五六一为立方积二积相减余九百九十一九九九为立羃积
通曰凡方内容圆圆内容方必彼此相切方可立算
平方求积法【即开平方之还原也】
径求积式径三十二为积几何曰积一千○二十四术以径三十二自乘得一千○二十四为积
周求积式周一百二十八为积几何曰积一千○二十四术以周一百二十八用四除之得三十二为径自乘得积
平圆求积法【即开平圆之还原也】
径求积式径六为积几何曰积二十七术径六自乘得三十六以三乘之得一百○八以四除之得二十七为积又术径六自乘得三十六以七五乘之得二千七百降二位得二十七亦合【三乘四除説见后】
周求积式周十八为积几何曰积二十七术周十八自乘得三百二十四以十二除之得二十七为积【十二除説见后】周径求积式径六周十八为积几何曰积二十七术径六与周十八相乘得一百○八以四除之得二十七为积
通曰此与三乘四除同径一周三故也
半周求积式半周九为积几何曰积二十七术九自乘得八十一以三除之得二十七【三除説见后】
半径求积式半径三为积几何曰积二十七术三自乘得九以三乘之得二十七【三乘説见后】
半周半径求积式半周九半径三为积几何曰积二十七术九与三相乘得二十七
通曰方径自乘得方形以此方形积均分作四股圆形内得三股四庇共得一股故用七五乘
者四分十之三也用二五乘者四分十之一也
通曰径用三乘得长方形即周径相乘也此内容圆形者三而三圆形之庇积
又成一圆形之积以此一圆并三圆而为四故三乘者用四除也
通曰周自乘得大方形此内有方形九而容圆形者亦九三圆形之庇积成一圆形之积则九圆形之庇积必成三圆形之积矣以此三圆并九圆而为十二故用十二除也
通曰半周自乘得全周自乘四分之一故用三除盖三除者十二除四分之一
也半径自乘与庇积等三其庇积而成圆积故用三乘也
立方求积法【即开立方之还原也】
径求积式径三十二为积几何曰积三万二千七百六十八术径三十二自乘得一千○二十四又乘三十二得三万二千七百六十八为积
立圆求积法【即开立圆之还原也】
径求积式径四十八为积几何曰积六万二千二百○八术径四十八自乘得二千三百○四再乘四十八得十一万○五百九十二以九乘之得九十九万五千三百二十八以十六除之得六万二千二百○八为积周求积式周一百四十四为积几何曰积六万二千二百○八术周一百四十四自乘得二万○七百三十六再乘一百四十四得二百九十八万五千九百八十四以四十八除之得六万二千二百○八为积
通曰立圆径自乘再乘乃立圆外之立方积也九回立方积即十六回立圆积故以九乘十六除也立圆周自乘再乘乃二十七回立方积也即四十八回立圆积故以四十八除也葢二十七者三回九也四十八者三回十六也而周求积之不用二十七乘者周巳大于径三回故不用三回九之二十七乘也
方环求积法
外方内方求环积式外方甲乙二十内方丙丁一十为环积几何曰积三百术以甲乙二十自乘得四百为庚辛乙甲全积以丙丁一十自乘得
一百为壬癸丁丙内积二积相减余三百为庚壬丙甲环积又术以甲乙二十并丙丁一十为三十倍之得六十为通环之长以丙丁减甲乙余一十折半得五即丁至巳为环濶以濶乘长得三百为环积
通曰并外方四面得八十并内方四面得四十又相并为一百二十折半得六十亦合环长
圆环求积法
外周内周求环积式外周甲戊乙巳四十八内周丙庚丁辛二十四为环积几何曰积一百四十四术以甲戊乙巳四十八自乘得三千三百○四以十二除之得一百九十二为甲
乙戊己全积以丙庚丁辛二十四自乘得五百七十六以十二除之得四十八为丙庚丁辛内积二积相减余一百四十四为甲丙戊庚环积又术以外周三折得全径十六以内周三折得内径八两径相减余八折半得四即甲至丙为环濶以三乘濶得十二减外周余三十六为通环之长以濶乘长得一百四十四为环积内周外周求环径式【即环濶也】术以外周四十八减内周二十四余二十四以六除之得四为环径即甲至丙内周环径求外周式术以六乘环径四得二十四并内周二十四得四十八为外周
外周环径求内周式术以六乘环径四得二十四减外周四十八余二十四为内周
通曰圆以六包一故用六乘六除也【详外包】
四破合环法
四破之一求去内外角成环式欲于丑寅大直角方形
内成圆环外周切方边内周
六问于甲丙小直角方形内
去内角外角各几何曰内角
去乙巳一外角去庚丁二术
通曰先于甲丙形用方斜率
法求得乙至丁为七乙至丙
为五乃以三除内周六得二为内径半之得一为半径即甲丙形之内角乙巳一也去之乙丙五内减等乙巳之乙戊一尚存戊丙四为环濶又于乙丁斜七减内角乙己一又减等戊丙之己庚四尚余庚丁二是为外角应去者也甲丙形为一破加丑乙子乙寅乙三破而环成矣故曰四破合环
二破至九破率説
通曰以前式四破之一为率二破得率二分之四益率
二分之二而成二破之一也三
破得率三分之四益率三分之
一而成三破之一也五破得率
五分之四损率五分
之一而成五破之一
也六破得率六分之
四损率六分之二而
成六破之一也七破
得率七分之四损率
七分之三而成七破
之一也八破得率八
分之四损率八分之
四而成八破之一也九破得率九分之四损率九分之五而成九破之一也万亿皆然葢四破得方圆四分之一故以四破为率二破者倍之八破者半之破愈多而分愈细也至彼此互变皆以率通或五变六或八变七以所变之六七为法分其应变之五八一破多益少损无不适合
合破成立圆法
式欲成子丑立圆形为破几何术通曰以圆周剖之周大则剖多周小则剖少以剖后之一破腰无圆形而止
也如以子丑圆周剖为三十二破一
破如丙丁甲乙形甲乙平而不圆矣
又以丙丁甲乙剖为二如丙甲乙甲
乙丁两形而两形必等则三十二其
丙丁甲乙形而成立圆六十四其丙甲乙形亦成立圆也葢丙至丁半周也十六其甲乙亦半周也
方内容弧矢六角八角法
直方内容弧矢形式方长十四方阔七问弧内积二角余积各几何曰弧内积七十三五二角余积二十四五术方长十四即方阔七即矢相并得二十一折半得十○五以矢七乘之得
七十三五为弧内积方长十四方阔七相乘得九十八为全积以减弧内积余二十四五为二角积折半得十二二五为一角积
通曰以十四折半得七又折半得三五乘矢七得二十四五亦合二角积
直方内容六角形式方长二十方阔十八六角面十问六角内积四角余积各几何曰六角内积二百七十四角余积九十术以方长二十减六角半面五余十五以方阔十八乘之得二百
七十为六角内积以角外余长五折半得二五乘角外余阔九得二十二五为一角积以四乘之得九十为四角积
通曰以余长五余阔九相乘得四十五倍之得九十亦合四角积
方内容八角形式八角面七问八角内积四角余积各几何曰八角内积二百三十九四角余积五十术以五乘八角面七得三十五以七除之得五为角外余方倍之得十为上下两余方加八角面七得十七为大方面自乘得二百八
十九为全积以角外余方五自乘得二十五倍之得五十为四角积以减全积余二百三十九为八角内积通曰以余方五自乘得二十五折半得十二五为一角积此式乃斜求方也四隅角面即方斜余方即方斜面故用五乘七除
方内容小圆法
式余积二千四百圆边离方边十问方面圆径各几何曰方面六十圆径四十术以离边十自乘得一百以三乘得三百加余积二千四百得二千七百为实以六乘离边十
得六十为从方用带从开平方法除之得三十【详十二卷】倍之得六十为方面以方面减两离边二十余四十为圆径
圆内容小方法
式余积七十二离边三问圆径方面各几何曰圆径十二方面六术以离边三自乘得九以四乘之得三十六倍余积得一百四十四相并得一百八十为实以离边三乘八
得二十四为纵方用带纵开平方法除之得六【详十二卷】为半径倍之得十二为圆径以圆径自乘得一百四十四以三乘得四百三十二以四除得一百○八以减余积七十二余三十六平方开之得六为方面
又式圆径九歩七分五厘离边三歩问内方积上下大弧积左右两直方积左右两小弧积各几何曰内方积十四歩○六厘二毫五丝大弧积各十八歩直方积各九歩八分四厘三毫七丝五忽小弧积各七分七厘三毫四丝
三忽七微五纎术以圆径折半得四歩八分七厘五毫自乘得二十三歩七分六厘五毫以半径减离边余一歩八分七厘五毫自乘得三歩五分一厘五毫两自乘相减余二十歩○二分五厘平方开之得四歩五分倍之得九歩为大弧用弧矢法【详后】得弧积十八歩以圆径减两离边余内方面三歩七分五厘自乘得十四歩○六厘二毫五丝为内方积以大弧九歩减内方面三歩七分五厘余五歩二分五厘折半得二歩六分二厘五毫为直方濶与内方面【即直长方】相乘将九歩八分四厘三毫七丝五忽为直方积内方面即小弧以圆径减大弧九歩余七分五厘折半得三分七厘五毫为小弧矢用弧矢法得小弧积七分七厘三毫四丝三忽七微五纎以大弧积倍之得三十六歩以直方积倍之得十九歩六分八厘七毫五丝以小弧积倍之得一歩五分四厘六毫八丝七忽五微以诸倍数与内方积十四歩○六厘二毫五丝相并得七十一歩二分九厘六毫八丝七忽五微为全圆之积
圆内容锭形法
式圆径十四问锭内积两榄余积各几何曰锭内积一
百两榄余积四十八术以五乘圆
径十四得七十以七除之得十卽
圆内容方边自乘得一百即容方
积即锭内积也以圆径十四减容
方边十余四即榄腰濶折半得二
加容方边十得十二乘腰濶四得四十八即两榄积又术以锭长十四【即圆径】自乘得一百九十六折半得九十八加二得一百为锭积
通曰圆内容锭与圆内容方等者何也葢截方两腰之半补上下而成锭截锭上下之等半腰者补两腰而成方也故圆径即锭长锭斜即圆径戊己丙丁甲乙皆等也丙丁甲乙皆方斜也丙乙甲丁皆容方边也故用五乘七除此斜求方耳以圆径求积得一百四十七今两积合为一百四十八而多一者葢榄长即容方边自乘百内多一也锭长自乘而加二者葢百内少二斜求积之差也
大平方内容小平圆求积圆法
式大方面四十二小圆径十四问积圆积空成圆共积圆各几何曰积圆九积空成圆三共积圆十二术通曰以小圆径十四除大方面四十二得三自乘得九即为积圆九也用前方内容圆法毎一小圆得内积一百四十七为圆实得庇积四十九为庇实以积圆九乘庇实得四百四十一
为隅空以圆实除隅空得三即为积空成圆三也加积圆九得十二即为
【打 印】 【来源:读书之家-dushuzhijia.com】