御制数理精蕴 - 第5部分

作者:【暂缺】 【98,917】字 目 录

共积圆十二也

大立方内容小立圆求积圆法

式大方面四十二小圆径十四问积圆积空成圆共积圆各几何曰积圆二十七积空成圆二十一共积圆四十八术通曰以小圆径十四除大方面四十二得三自乘得九再乘三

得二十七即为积圆二十七也用前立圆求积法毎一小立圆得内积一千五百四十三五为圆实以大方面自乘得一千七百六十四再乘得七万四千○八十八为全方实以积圆二十七乘圆实得四万一千六百七十四五为全圆实以全圆实减全方实余三万二千四百一十三五为隅空以圆实除隅空得二十一即为积空成圆二十一也加积圆二十七得四十八即为共积圆四十八也

通曰前式三分益一也圆居方四分之三庇居方四分之一则庇必居圆三分之一矣遇三加一九故加三也此式九分益七也立圆居立方十六分之九立庇居立方十六分之七则立庇必居立圆九分之七矣遇九加七二十七故加二十一也

大平圆内容小平圆求积法

式大圆径十二容积圆七小圆径四问积空成圆共积圆各几何曰积空成圆二共积圆九术通曰以大圆径十二用前平圆求积法得全积一百○八为全圆实以小圆径四亦如

法得内积十二以乘积圆七得八十四为小圆实二实相减余二十四为隅空以内积十二除隅空得二即为积空成圆二也加积圆七得九即为共积圆九也

大立圆内容小立圆求积圆法

式大立圆径十二容积立圆十五小立圆径四问积空成立圆共积立圆各几何曰积空成立圆十二共积立圆二十七术通曰以大立圆径十二用前立圆求积法得全积九百七

十二为全立圆实以小立圆径四亦如法得内积三十六以乘积圆十五得五百四十为小立圆实二实相减余四百三十二为隅空以内积三十六除隅空得十二即为积空成立圆十二加积立圆十五得二十七即为共积立圆二十七也【按大立圆径十二小立圆径四必不能容十五设题未合】通曰此二式不可为率隅空不等故耳近边则空多近中则空寡若不论小形而论大小形之积实则凡大形内容小形者先求大形之全积为实次求小形之内积为法以法除实皆得其积若干小形之数也

弧矢【少广之二】

弧矢解

弧矢状类勾股勾股得直方之半故倍其积以股除之即得勾弧背曲倍积则长一与一矢以矢乘积倍之适得一一矢之数因未知矢故以积自乘为实约一度乘积以为上廉两度乘径以为下廉并之为法而后可以得矢也用三乘者何也积本平方以倍积自乘是两度平方矣故用三乘方法开之上廉下廉俱用四乘者何也倍积则乘出之数为积者四故也如不倍积廉不用四乘以一二五为隅法亦通减径者何也径乃圆之全径矢乃截处之勾矢本减径而得故亦减径以求矢也或不减径作添积三乘方法亦通五为负隅者何也凡平圆之积得平方四分之三在内者七五在外者二五不拘圆之大小毎方一尺虚隅二寸五分其矢得四其虚隅得一合而为五亦升实就法之意也

圆径截积求矢法

式圆径十三截积三十二问矢各几何曰矢四十二术倍截积三十二得六十四自乘得四千零九十六为实以四乘截积三十二得一百二十八为上廉以四乘圆径十三得

五十二为下廉以五为负隅用开三乘方法除之【详十四卷】得四为矢倍截积得六十四以矢除之得十六减矢余十二为

弧积离径求矢弧背圆径半径法

式弧积一百二十八离径五问矢背圆径半径各几何曰矢八二十四弧背二十九零圆径二十六半径十三术以弧积一百二十八为实倍弧积得二百五十六平方开之得十六为法以法除实得八为矢以矢加法十六得二十四为以矢自

乘得六十四以二十四除之得二六零为半与背之差倍之得五零加二十四得二十九零为弧背以折半得十二自乘得一百四十四为实以矢八为法除得十八加矢得二十六为圆径折半得十三为半径即离径五与矢八相并也

矢求弧积式术矢相并得三十二折半得十六以矢乘之得一百二十八为弧积又术矢相乘得一百九十二矢自乘得六十四相并得二百五十六半之为弧积

矢弧积求式术倍弧积得二百五十六以矢八除之得三十二减矢余二十四为

弧积求矢式术倍弧积得二百五十六以二十四为纵方用带纵开平方法除之【详十二卷】得八为矢圆径求离径矢式 术以圆径折半得十三自乘得一百六十九以折半得十二自乘得一百四十四两自乘相减余二十五平方开之得五为离径以半径十三减离径五余八为矢

矢圆径求式 术以圆径二十六减矢八余十八以矢乘之得一百四十四平方开之得十二倍之得二十四为

离径求圆径式 术以折半得十二自乘得一百四十四以离径五自乘得二十五相并得一百六十九平方开之得十三倍之得二十六为圆径

圆径离径求式术以圆径折半得十三自乘得一百六十九以离径五自乘得二十五相减余一百四十四平方开之得十二倍之得二十四为

弧矢内股求勾法

式圆径十矢一为勾几何弧几何曰勾三弧六以圆径十折半为五自乘得二十五为羃以半径五减矢一余四为股自乘得十六为股羃二羃相减余九平方开之得三为勾倍勾得六为弧又术以

圆径自乘得

打 印】 【来源:读书之家-dushuzhijia.com】