御制数理精蕴 - 第5部分

作者:【暂缺】 【98,917】字 目 录

之以存位下数乘上○下○乘上数皆曰某○如○下○乘上○曰○○如○则本位左位俱纪○也

十因

式乘上下数不等少数尚未满十乘数而少数不及于乘上下数如以八乘九何以得七十二术九在十内少一纪一于九右八在十内少二纪二于八右是八九为乘上下数一二为少数也上九下八上下数不等也一不及九二不及八少数不及也以少数一二相乘得二纪下二未满十故曰未满十乘数也

又以右一斜减左八右二斜减左九俱余七数同下纪七故得七十二

又式乘上下数等少数未满十乘数而少数不及于乘上下数如以八乘八何以得六十四术上下俱八故曰上下数等八在十内少二右俱纪二相

乘得四下纪四左右上下斜减俱余六下纪六故得六十四

又式乘上下数等少数已满十乘数而少数反过于乘上下数如以三乘三何以得九术上下俱三三在十内少七右俱纪七相乘得四十九已有四十故曰已满十乘数也下纪九寄四于左左上下三各

加所寄四俱变为七然后左右上下斜减俱无余下纪○故得九

又式乘上下数不等少数满十乘数而少数不及于乘上下数如以六乘七何以得四十二术七在十内少三六在十内少四俱纪右相乘得一十二下纪二寄一于左左上七加一变为八下六加一变为七然后左右上下斜减俱余四下纪四故得四十二又

术三四乘得一十二将一悬于左待左右上下斜减俱余三乃并所悬之一为四亦合

通曰一二之乘得八九之乘是以小乘而得大乘也七七之乘得三三之乘是以大乘而得小乘也九因本乎十因即洛书之无十而藏十也

诸式

一位乘式有一百五十二人每人六两问共若干曰九百一十二两术列定自右乘起先以六乘二曰二六一十二此平也左位纪一本位纪二次以六乘五曰五六三十此足也左位纪三本位纪○次以六乘一曰一六如

六此如也左位纪○本位纪六所纪散数用加法合问乘数六是两推至总数首为百

多位乘而原数中有○式有四千六百零八人每人三百二十五两问共若干曰一百四十九万七千六百两术列数以五乘八曰五八四十以五乘○曰五○如○以五乘六曰五六三十以五乘四曰五四二十如法纪

之此五之徧乘也次以二乘八

曰二八一十六以二乘○曰二

○如○以二乘六曰二六一十

二以二乘四曰二四如八如法

进位纪之此二之徧乘也次以

三乘八曰三八二十四以三乘

○曰三○如○以三乘六曰三

六一十八以三乘四曰三四一十二如法又进位纪之此三之徧乘也用加法合问

原数尾有○式有六百人每人六两问共若干曰三千六百两术以六乘尾○曰六○如○次以六乘次○曰六○如○次以六乘六曰六六三十六此乘○以存位也推至总首为

乘数尾有○式有四十五人每人六十两问共若干曰二千七百两术乘数尾有○虽不必乘然一○为十二○为百不可不列位列后从六乘起可耳以六乘五曰五六三十以六乘四曰四六二十四推至总首为千

原数乘数尾俱有○式有六百人每人三百四十两问

共若干曰二十万零四千两术列定

先以四徧乘次以三徧乘得总数尾

三○便于定位

通曰加减乘除皆可易横

为直而乘用直觉便故附

于此至于诸○立法不得

不存熟则不用矣

试乘差法

术曰九减七减如前但左右列数多一互乘得数又减之余列上总数减余列下上下相比也不用散数九减式试第二式除○九外并原数四六八为一十八

九减无余列○于乂左并乘数

三二五为一十九减余一列乂

右以左右一与○乘曰一○如○无数列○于乂上并总数一四七六为一十八九减无余列○于乂下上下相比无

七减式试第四式原数如法减之余三列乂左乘数如法减之余四列乂右以左右三四乘得一十二七减余

五列上总数如法减之余五列

下上下相比无差

通曰九减用见数可去○九不用七减用实积数必存○九之位与数以便逐

位减至右末而止也

除法

术曰有实有法有用数实即原数列上法即除数列下用即所求分数也上下齐左从左起算下首少于上首者齐列下首多于上首者退位列之于右界格以法除实视法首于实内有防回即用防除之而纪其防除之数于格外为用数也原实变后即为余实存上次法乘用数除实尽法位而止又将法数退一位列下【一徧用数一徧退位与初列退位不同】再视法首于余实内有防回当用防除而又纪其防除之数于第一次用数之右次法又乘第二次用数除实也以法尾退至实尾齐右而止格外所纪为分数有余实亦当存之再除实尾数即用尾数推而知用数之首也

通曰以下除上凡除亦有二位左除十右除零右即本位本位上左有实者将左右两实作为防十防也左有实而右无实者作防十也左无实而右有实者为零数也若遇实数可以除此一徧而不足以除下徧者则知用数中当有零矣详后式

定列位

通曰其法有五不退者二退位者三与珠算无除説同盖不退者有可除之数也退者无可除之数也

诸式

退位式有三百四十二两九人分之问各若干曰三十

八两术法首九多于实首三当退位列法实首三四

打 印】 【来源:读书之家-dushuzhijia.com】