御制数理精蕴 - 第5部分

作者:【暂缺】 【98,917】字 目 录

四作三十四【退位故作防十防也】视三十四内有三回九当以三为用数纪格右以九乘三得二十七于三十四内除之抹去三变四为七次以法九退列余实七二作七十二内有八回九当以八为次用数纪首用数三右于余实内除八九七十二实尽俱抹去格右所纪三八即所求分数法

尾齐实尾两数则知用数尾八为两也

不退位及减用数式有八百五十五两四十五人分之问各若干曰一十九两术法首四少于实首八不退位实八即作八视八内有二回四当以二为用数但二四除实首八而次法二五除一十则无实可除遇此则减用数一止以一为用数一四除四一五除五次以法退列余实四○作四十视有九回四当以九为

次用数四九除三十六五九除四十五实尽合问用数中当有○式有七万六千零四十八两八人分之问各若干曰九千五百零六两术退位列法首用数该九八九除七十二又退位列法次用数该五五八除四十又退位列法八适至实之四下左无余实四不足除遇此则纪○以当一徧用数又退位列法次用数该六六八除四十八实尽合问

通曰前式格外用数用横列今易为直盖横

直俱可用也

实尾有○式有三百两六人分之问各若干曰五十两退位列法首用数五五六除三十纪五于格

右实数尽矣尚有余○乃退位列法次用数无数而纪○故知所得为五十两也

通曰视实尽后法尾去实尾尚空防位毎空一位加一○于用数之右亦合

实不尽式有六百五十三两五十八人分之问各若干曰一十一两【余实一十五两未分】又各二钱五分【余实五钱未分】术不退位列首用数该一 一五除五一八除八退位列法次用数该一一五除五一八除八法尾已齐实尾当暂止以察用尾为何数既知为两数余

实再除

术右式余实一十五两法当退位列用数该二二五除一十二八除一十六退位列法次用数该五五五除二十五五八除四十此用数首根前式用数尾下当是钱数也尚余实俟再除

通曰初列实时先于实右加○每加一○作降实尾一数【两降钱钱降分】即以○末为实尾较便

试除差法

术曰亦用九减七减其除毕无余实者将除数减余列左用数减余列右左右相乘减余列上原数减余列下相比其未尽实者于左右乘后并入余实减余列上原数减余列下比之若除实至半者亦以除数减余列左用数减余列右相乘又取本位【法尾止处】以前余实减余以并左右乘数再减余列上以抺过原数减余列下相比也

除无余九减式试第一式除数九九减无余左列○并

用数三八为一十一九减余二

右列二乘无数列○于乂上并

原数三四二为九九减无余列○于乂

上并原数三四二为九九减无余列○于乂下上下相比无差

除有余九减式试第五式并除数五八为一十三九减

余四左列四并用数一一

为二不足九减右即列二

乘得八又并余实一五为一十四

九减余五列上并原数六五三为一十四九减余五列下上下相比无差

除无余七减式试第一式除数九作九七减余二列左用数三八作三十八七减余三列右乘得六不足七减

即列六于上原数三四作三十

四七减余六次作六十二七减

余六列下上下相比无差

除有余七减式试第五式除数五八作五十八七减余二列左用数一一作一十一七减余四列右乘得八又

以余实一五作一十五七

减余一以此用一并左右

所乘八为九七减余二列上原数

六五作六十五七减余二次作二十三七减余二列下上下相比无差

半除试差式除数六五用数一三原数八六六三余实二一三 用九减并除数六五为一十一九减余二列左又并用数一三为四不足九减右即列四乘得八乃并法尾止处以前之余实二一为三不足九减即以此

三并左右所乘八为一十一

九减余二列上并原数抺去

三位之八六六为二十九减

余二列下上下相比无差

用七减除数六五作六十五七减余二列左用数一三作一十三七减余六列

右乘得一十二乃以法尾止处以前之余实二一作二十一七减无余与左右所乘数相并仍是一十二七减余五列上原数抺去之八六作八十六七减余二次作二十六七减余五列下上下相比无差

通曰试差之法独用九七何也盖十者数之穷也数穷则变十复为一故数始于一终于九九阳数也下九之阳数为七故七与九同用自七九而外或有合者于率不通不可立法所以加减试差用实积则无不可用见数则七与五不可也乘除试差用实积则亦无不可用见数则自九而外皆不可也若夫论除之余六与三之余同九是用九而六三可无用矣四与二之余同八是用八而四二之余可无用矣且八或可以试加减而或不可以试乘除亦不可用然则试差之法舍七与九又何所取用哉

命分法

术曰命分者一大防何已分防何命余者为防何分之防何也又曰所余之小防何再分防何命此得者为防何分之防何也

通曰第一术即防何原本之命比例法也第二术恰尽则可否则终不能尽也

式法数为母余数为子如实数八万七千二百四十八法数三百七十四法尾已齐实尾用数已得二三三尚有余实一○六当命为三百七十四分之一百零六也又式得数为子得数前位为母得数一位为十二位为百三位为千也如右式余实一○六先于六右加一○依法再除之得二又加一○再除之得八又加一○再除之得三凡三位乃千也当命为千分之二百八十三也

数度衍巻二

<子部,天文算法类,算书之属,数度衍>

钦定四库全书

数度术卷三

桐城 方中通 撰

笔算下

奇零列位法

术曰奇零者不尽数也加减乗除皆有奇零惟除为多耳以法命之曰几分之几除数为母列上零数为子列下

式有实四十六法七用数六除四十二尚余实四命之

曰七之四七列上四列下

通曰以母分子故以法为母子随母分故以实

为子

奇零别多寡法

术曰母同子异别在子子同母异别在母俱异者别在子母也

母同式奇零有二一曰七之三一曰七之四辨其孰多孰寡今母数等矣但据子数别之子多者为多子少者为少耳

子同式若子数相等母数不等者其母数小子数反大母数大子数反小如二分十之一得五三分十之一止得三三耳当以母数少

者为多

子母俱异式子数母数俱不等以彼此子母互乗得数各注其下较之其较有三一曰差逺一曰稍差一曰相同法皆一也

竒零约法

术曰约多者为少其法有三一用折半一用通数一用纽数纽数不得则不可复约矣只就见数较多寡用彼此互乘之法

折半式十六之八约之为少折母数十六为八折子数八为四

约为八之四再折半又约为四之

通数式四十八之三十六欲约之视子母两数有何数相乗而得其数即通数也今以六为通数

以六乘八得四十八母可约为八以六乘六得三十六子可约为六

纽数式以小减大减尽而止以最后减尽数为纽数以除子母二数得约数也四十八内减三十二余十六又于三十二内减十六两次减尽是十六为

纽数矣以十六除四十八得三约母为三以十六除三十二得二约子为二

通曰纽即通也但通可见而纽不见耳今以十六为通数以三乗之得四十八以二乗之得三十二亦合

奇零并母子法

术曰凡两子母数先并母较之使两母数等以两母相乘得共母数次以两母互乘两子得各子数或三四母子不同并较多寡者亦以各母次第叠乗并一共母为实乃以各母数为各法除之即以各子数乗各所除数得各子数也

两母子相并式甲三之二乙四之三欲并一共母以两母乘得十二为共母数以甲子二乘乙母四得八为甲并子以乙子三乘甲母

三得九为乙并子

四母子相并式甲二之一乙三之二丙四之三丁五之一欲并一共母以甲母二乘乙母三得六又以六乘丙母四得二十四又以二十四乗丁母五得一百二十为共母以甲母二除共母得六十以甲子一乗之得六十为甲并子以乙母三除共母得四十以乙子二

乗之得八十为乙并子以丙母四除共母得三十以丙子三乗之得九十为丙并子以丁母五除共母得二十四以丁子一乗之得二十四为丁并子

倂母子用纽数式若母数相乗过有纽数可用即用纽数如甲母乗乙母得六嗣当与丙母四相乗有二为纽数可用【二与三乗得六二与二乗得四】则约甲乙相乗之六为三约丙母四为二乃复以甲乙相乗之六乗丙母所约之二得十二以丙母四乘甲乙所约之三得十二是甲乙丙母俱得十二数而止也至丁母无纽数即以十二

乘丁母五得六十则前式共母之一百二十今约为六十矣如法逐位母除子乗所得并子俱减前式之半

奇零累析约法

术曰奇零有析之又析者或三四析欲知其总用母乗母子乗子法三四位者母子俱湏叠乗也

二位析求总式七之四又五分四之三列自左向右七之四在左五之三在右两母乗得三十五两子乗得十二是总得三十五之一十二

四位析求总式二之一又六分一之一又四分一之三又三分三之二列自左向右算仍自右向左以丁母三乗丙母四得十二又以十二乗乙母六得七十二又以七十二乗甲母二得一百四十四为总母以丁

子二乗丙子三得六以六乗乙子一得六以六乗甲子一得六为总子是总为一百四十四之六也

化法

术曰凡整数后带奇零欲将整数尽依母数化之以母数乘整数以乗得数入子数却以母数除之有零无零两化俱合

化整为零式有整六又零五分一之三列六于左列五之三于右以母五乗整六得三十并子数三为三十三是化为五之三十三也

零数归整无零式七之五十六欲归为整以母数除子

数用八除尽知是八为整数也

零数归整有零式九之四十七欲归为整以母除子用五除于子四十七内除五九四十五尚余二知是整五又零九之二也

奇零加法

术曰两零数以至多零数及整与零数欲并为一者同母则一母可代众母异母则湏叠乗为共母也子不拘同异皆并为一遇有纽数者用纽数求其共母两位者子母互乘以求并子位多者母除子乘以求并子同母之子惟并而已异母之子湏求并子而并也其整与零并先并整次并零合为一曰积

同母式曰七之五曰七之六欲并为一同母七即用为

共母两子并得十一为共子积为

七之一十一归得一零七之四

异母式两母不同乘得十二为共母甲子乘乙母得八

为甲并子乙子乘甲母得九为

乙并子再以两并子并得十七

积为一十二之一十七

异母位多式以甲母七乘乙母十三得九十一再乘丙

母十一得一千零一为共母依

法各母除各子乘得各并子又

并得共子积为一千零一之二

千六百九十二

一整一零并式零曰五之三整曰八倂为一仍以整为整零为零即为八又零五之三也

二整一零并式零曰三之二整曰四曰八并为一先倂两整得一十二零数止一位无倂积为一十二又零三之二也

整与同母二零倂式零曰七之二曰七之六整曰八曰四先倂两整得十二次并两子得八同母七即为共母积为一十二又零七之八也

整与异母二零并式零曰三之二曰四之三整曰八整数无并两母乘得十二为共母左右母子互乘右子得八左子得九为倂子再并得十七积为八又零十二之十七也

试加差法

通曰加用减试用加试皆有同母异母之分

试同母式以右子五减积子十一余六合左子数以左子六减积子十一余五合右子数合则无差

试异母式先试母以右母三除共母十二得四合左母

数以左母四除共母十二得三

合右母数无差次试子以右并

子八减积子十七余九合左并子数以左并子九减积子十七余八合右并子数又以左母四除右并子八得二合右子数以右母三除左并子九得三合左子数无差

竒零减法

术曰先审多寡多为原数少为减数同母止就子数相减异母先求共母又母除子乘求各子乃以相减也通曰多中减少即右内减左也但并母子数有时似少中减多者而化整之后仍是多中减少也

同母式曰十七之八曰十七之五相减此当于十七之

八内减十七之五也同母止于右子

八内减左子五余三得十七之三

异母式曰九之八曰三之二相减先以两母乘得二十

七为共母乃母除子乘得各

子审多寡然后相

打 印】 【来源:读书之家-dushuzhijia.com】