藏山雷学 - 卷五

作者:【暂缺】 【13,727】字 目 录

第一节 同余运算

[一]

在易学中,我们讨论八卦的排列规律,首先想到的往往就是先天八卦的爻象对称排列,有了这种先入之见,我们自然会用先天八卦的规律来判断后天八卦的规律。

欲摆脱成见,我们必须引入新的思想来平等的定义先后天八卦的共同规律--众所周知,“圆”是一个形式与内容的完美的象征,它的构成只要满足下面两个条件中的任何一种就可以了。它们是:

条件一:在某个“环形物”中,而此“环形物”的边界上的任何一点距中心点的距离如果完全相等,那么,此物即为“圆”--具体地说:“圆”的直径处处相等。

我们如欲用某种分立的、离散的结构来模似一个“圆”,那么,只要满足此条件即可称之为“圆”--很显然,先天八卦和洛书是可以满足上述条件的。

在洛书的数阵中,无论是用哪一条直线〔即直径〕把三组离散的洛书数连起来,其直线上的数字和皆为“15”。故洛书是“圆”的一种数值模拟结构。

先天八卦也是一样,只是操作略有不同。我们知道,同一直径的两个半径,实际上是两个矢量,其绝对值〔模〕虽然相等〔等於半径R〕,但其极性却截然相反。若此二矢量相互作用,将会泯灭极性。先天八卦即有此特性:把两对待之卦相互作用,则各爻极性完全泯灭,所以先天八卦也是“圆”的一种符号模拟结构。

条件二:在某个“环状物”中,如果此“环状物”的边界是一种连续的光滑的过渡状态,即此物体的边界没有非连续性的凹凸出现,那么该物体就一定是“圆”,因“圆”边界处处光滑,比如,我们常见的“平面几何圆”的边界就是光滑无凹凸的。

后天八卦是用五行的连续相生来体现“条件二”的,故后天八卦也是一种“圆”的模拟结构,并且二八易位后的洛书也是一种满足条件二“模拟圆”。

[二]

大家可能会警惕地说,后天八卦的五行连续相生在八宫是非连续的过渡态,也就是说它是有破缺的;在形态上此处非凹即凸,它绝不是完美的模拟“圆”,因为它没有最彻底的对称性存在。

可问题是:虽然先天八卦以一种局域对称的形式来模拟了“圆”,但是,如果反过来用“条件二”中的规则来要求先天八卦,先天八卦也会明显地出现破缺--即先天八卦的男女长幼秩序是不光滑的、非连续性的,它在“震、巽”二卦上有了破缺,正如我们在《理部·第一章》所见到的那样。

如果我们在实践运用中只采用后天八卦〔或先天八卦〕这一种机制来操作的话,是肯定不行的。比如,在卜筮中对某种事物作出吉凶判断,一般都是用后天的五行生克的“旺、相、休、囚”来决定的,但纯粹的五行生克能否完全描述事物吉凶是肯定不完全的,故后天逻辑在分析事物吉凶中的不完全是可用先天数理逻辑来补救的--这就是我们需要引入“刑、冲、合、害”的由来。

学易的人都知道,“刑、冲、合、害”是一种超越五行生克的运算规则;也就是说“刑、冲、合、害”规则同五行生克规则没有联系,它是对五行生克规则的补充,其原理来自於先天八卦的数理思维。

现在,我们想问的是:作为与五行生克对待的补充性的运算规则应有多少种才合理呢?根据在前文中提到的公理极限原理,作者认为一共得有五种,即:刑、冲、合、害、比。此五种地支中的相互作用的运算规则,我们称之为“肆互壹局”,即“肆互”--互刑、互冲、互合、互害;“壹局”--比和之局。

我们说肆互壹局是一种先天数理化逻辑运算规则,这一结论是完全可以从数理化的运算规则中得到证明的。

冲--

在《六壬大全》有云:“冲者动也,格也。其法以十二支环列,阴阳各相为冲。凡冲主动移,反复不宁。”六冲配洛书图如下:

[图,地支六冲与洛书]

地支六冲用加法运算可得:

子午相冲→1+9=10

丑未相冲→8+2=10

寅申相冲→8+2=10

卯酉相冲→3+7=10

辰戍相冲→4+6=10

巳亥相冲→4+6=10

六冲相加俱化“10”,相当于化“零”〔即以10为模同余0〕。“10”为中宫之数。也就是说,两支互冲之后,两支都进入了中宫而“消失”“空亡”,也即两支相互格斗而“散”。作为八卦的整数化二维坐标图洛书来说,中宫之数“5”、“10”和“零”是等价的,它们都代表坐标的中心原点。六冲所化之数同余“零”,“零者”气散之象,泯灭之象。此外,六冲在此几何图中是旋转对称之象;象数俱对称,故具有共同的“格斗”、“中和”的性质。

合--

六合指两种阴阳和五行所属都不相同的地支相互合二为一,此地支六合关系可以用图5.2示之。

[图,地支六合与洛书]

地支六合有很多平行线,是“平行对称性”的体现,而能够满足“平行对称性”的各种组合之间是平行等价关系。其等价的作用量,须先将二数相乘,然后求同余:

子丑合→1×8=8 →化8

 

打 印】 【来源:读书之家-dushuzhijia.com】

首页 上一页 1 2345下一页末页共5页/10000条记录